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a b s t r a c t

We study phase field equations in perforated domains for arbitrary free energies. These
equations have found numerous applications in a wide spectrum of both science and en-
gineering problems with homogeneous environments. Here, we focus on strongly hetero-
geneous materials with perforations such as porous media. To the best of our knowledge,
we provide the first derivation of upscaled equations for general free energy densities. In
view of the versatile applications of phase field equations, we expect that our study will
lead to new modelling and computational perspectives for interfacial transport and phase
transformations in strongly heterogeneous environments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction: phase field formulation in heterogeneous media

Our starting point is thewidely accepted diffuse-interface formulation [1] describing the dynamics of interfaces between
different phases. This formulation captures different thermodynamic states of a system by a continuous macroscopic
variable obtained from averagedmicroscopic degrees of freedom. Such amacro variable represents a locally conserved order
parameter, denoted as φ, which defines different phases as local equilibrium limiting values of a free energy associated with
the system under consideration.

Diffuse interface formulations show a high versatility which is further extended due to increasing computational power.
This leads continuously to new and increasingly complex scientific and engineering applications such as more realistic
descriptions for the computation of transport in porous media [2] which represents a high-dimensional multiscale problem
with many numerical challenges [3]. Our main result here is the systematic and general derivation of effective macroscopic
equations which reliably account for multiple phases invading strongly heterogeneous environments such as porous
materials.

The physical basis of the diffuse interface formulation relies on the following class of abstract energy densities:

e(φ) :=
1
λ
F(φ)+

λ

2
|∇φ|

2 . (1)
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Fig. 1. Left: Strongly heterogeneous/perforated material as a periodic covering of reference cells Y := [0, ℓ]d . Top, middle: Definition of the reference cell
Y = Y 1

∪ Y 2 with ℓ = 1. Right: The ‘‘homogenization limit’’ ϵ :=
ℓ
L → 0 scales the perforated domain such that perforations become invisible on the

macroscale.

The free energy density F defines equilibrium phases φi, i = 1, 2, . . . ,M as M ∈ N local minima and the gradient term
λ
2 |∇φ|

2 penalizes the interfacial area between these equilibrium phases. In thermodynamic contexts, F represents the
(Helmholtz) free energy density F(φ) := U − TS, where U is the internal energy, T is the temperature, and S is the entropy.
Popular examples include the energy of regular solutions (also known as the Flory–Huggins energy [4]). The regular solu-
tion theory plays a crucial role in many important applications such as ionic melts [5], water sorption in porous solids [6],
and micellization in binary surfactant mixtures [7]. In addition, wetting phenomena, often studied using classical sharp-
interface approximations, e.g. [8], are also described by phase-field equations [9–11] which have been extended to include
electric fields (so-called electrowetting, e.g. [12]). This energy-functionals based framework has also been applied in image
processing such as inpainting, see e.g. [13].

In a previous study [14], we focused on a specific form of the homogeneous free energy density andwe recently extended
it towards Stokes flow [15]. Here, we provide an upscaling for H−1-gradient flows of arbitrary free energy densities based
on a Taylor expansion of the free energy density at the effective upscaled solution. Before we can state our main result, we
formulate the basic setting to study general interfacial dynamics.

(a) Homogeneous domains Ω . The total (Ginzburg–Landau/Cahn–Hilliard) energy is defined by E(φ) :=

Ω
e(φ) dx

with density (1) on a bounded domainΩ ⊂ Rd with smooth boundary ∂Ω and 1 ≤ d ≤ 3 denotes the spatial dimension. It
is well accepted that thermodynamic equilibrium can be achieved by minimizing the energy E supplemented by a possible
wetting boundary contribution


∂Ω

g(x) dx for g(x) ∈ H3/2(∂Ω). Mass conservation for this minimization can be generally
achieved with a H−1-gradient flow associated to E(φ), i.e.,

(Homogeneous case)
∂

∂t
φ = div


M̂∇


1
λ
f (φ)− λ∆φ


inΩT , (2)

together with the boundary conditions ∇nφ := n · ∇φ = g(x) on ∂ΩT , and ∇n∆φ = 0 on ∂ΩT , where ΩT := Ω×]0, T [,
∂ΩT := ∂Ω×]0, T [, φ satisfies the initial condition φ(x, 0) = ψ(x), and M̂ =


mij

1≤i,j≤d denotes a mobility tensor with

real and bounded elements mij > 0. This equation serves as a prototype for interfacial dynamics [e.g. [16]] and phase trans-
formation [e.g. [1]] under homogeneous Neumann boundary conditions, i.e., g = 0, and free energy densities F .

(b)Heterogeneous/perforateddomainsΩϵ . Ourmain focus concentrates on (1) in a perforated domainΩϵ
⊂ Rd instead

of a homogeneous Ω ⊂ Rd. The parameter ϵ =
ℓ
L > 0 is called heterogeneity where ℓ represents the characteristic pore

size and L is the macroscopic length of the porous medium, see Fig. 1. Herewith, we can define the porous medium by a
reference pore/cell Y := [0, ℓ1] × [0, ℓ2] × · · · × [0, ℓd]. For simplicity, we set ℓ1 = ℓ2 = · · · = ℓd = 1. The pore (Ωϵ) and
the solid phase (Bϵ) are defined by

Ωϵ
:=


z∈Zd

ϵ

Y 1

+ z

∩Ω, Bϵ :=


z∈Zd

ϵ

Y 2

+ z

∩Ω = Ω \Ωϵ, (3)

where the subsets Y 1, Y 2
⊂ Y are such thatΩϵ is a connected set. The set Y 1

⊂ Y represents the pore phase (e.g. liquid or
gas phase inwetting problems), see Fig. 1. Herewith, we can rewrite (2) as the followingmicroscopic porousmedia problem:

(Micro-pore equation)

∂tφϵ = div


M̂∇


−λ∆φϵ +

1
λ
f (φϵ)


inΩϵ

T , (4)

with the boundary (∇nφϵ := n · ∇φϵ = 0 on ∂Ωϵ
T , ∇n∆φϵ = 0 on ∂Ωϵ

T ) and initial (φϵ(x, 0) = ψ(x) onΩϵ) conditions.
Our main objective is the derivation of a systematic and reliable homogenized/upscaled phase field formulation valid for
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general energy densities (1) by passing to the limit ϵ → 0 in (4). We formally achieve this by asymptotic multiscale expan-
sions [17,18].

The main results are stated in Section 2 and subsequently justified in Section 3.

2. Main results

Before we state our main result of effective macroscopic phase field equations (including the Cahn–Hilliard equation)
which is valid for arbitrary energy densities (1), we introduce the following scale separation property of the chemical
potential.

Definition 2.1 (Scale Separation).We say that the chemical potential is scale separated if and only if

∂µ(φ0(x))
∂xk

=

0 on the reference cell Y ,
∂µ(φ0(x))

∂xk
on the macroscaleΩ,

where φ0(x) is the upscaled/slow variable solving the upscaled phase field equation.

Remark 2.2. Definition 2.1 accounts for the problem specific separation between the large (macroscopic) scale xwith slow
processes and the small (microscopic) scale ywith fast processes. �

In the homogenization/upscaling of nonlinear equations, Definition 2.1 appears naturally in the sense that it leads to the
same class of equations on the macroscale as on the microscale and that it guarantees that resulting cell problems are well-
posed [15,19,20]. These considerations together with the splitting strategy [14,15], which decouples 4th order problems (4)
into two 2nd order equations, allow us to state the following:

Main Result: (Upscaled Cahn–Hilliard equations) Suppose that ψ(x) ∈ H2
E (Ω). For scale separated chemical potentials

µ0 = ∇φE(φ0) (Definition 2.1), the microscopic porous media formulation (4) can be effectively and reliably approximated by
the following macroscopic problem,

(Upscaled equation)

θ1
∂φ0

∂t
= div


M̂φ/λ∇f (φ0)


+
λ

θ1
div


M̂w∇


div


D̂∇φ0


inΩT , (5)

with boundary (∇nφ0 = n ·∇φ0 = 0 on ∂ΩT ,∇n∆φ0 = 0 on ∂ΩT ) and initial (φ0(x, 0) = ψ(x) inΩ) conditions, where θ1 :=Y1


|Y |
is the porosity and the porous media correction tensors D̂ := {dik}1≤i,k≤d, M̂φ =


mφ

ik


1≤i,k≤d

and M̂w =

mw

ik(x)

1≤i,k≤d

are defined by

dik :=
1

|Y |

d
j=1


Y1


δik − δij

∂ξ kφ

∂yj


dy,

mφ

ik :=
1

|Y |

d
j=1


Y1


mik − mij

∂ξ kφ

∂yj


dy,

mw
ik(x) :=

1
|Y |

d
j=1


Y1


mik − mij

∂ξ kw

∂yj


dy.

(6)

The corrector functions ξ kφ ∈ H1
per(Y

1) and ξ kw ∈ L2(Ω;H1
per(Y

1)) for 1 ≤ k ≤ d solve in the distributional sense the following
reference cell problems:

ξ kw :



−

d
i,j,k=1

∂

∂yi


mik − mij

∂ξ kw

∂yj


= −

d
k,i,j=1

∂

∂yi


mik − mij

∂ξ kφ

∂yj


in Y 1,

d
i,j,k=1

ni


mij
∂ξ kw

∂yj
− mik


+


mik − mij

∂ξ kφ

∂yj


= 0 on ∂Y 1

w ∩ ∂Y 2
w,

ξ kw(y) is Y -periodic and MY1(ξ kw) = 0,

ξ kφ :



−

d
i,j=1

∂

∂yi


δik − δij

∂ξ kφ

∂yj


= 0 in Y 1,

d
i,j=1

ni


δij
∂ξ kφ

∂yj
− δik


= 0 on ∂Y 1,

ξ kφ(y) is Y -periodic and MY1(ξ kφ) = 0.

(7)
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The expression ∇φE(φ) denotes the Fréchet derivative of E with respect to φ. The upscaled equations show the math-
ematically and physically convincing feature that they preserve the structure from the microscopic formulation except for
the effective correction tensors (6). For a rigorous error quantification, we refer the interested reader to [21].

Remark 2.3. (i) For an isotropic mobility, i.e., M̂ := mÎ where Î is the identity matrix, we have ξ kw = ξ kφ . In this case, one can
find computational results in Ref. [22] for the cell problems. �

3. Basic steps in the derivation using formal asymptotic expansions

We introduce the micro-scale x
ϵ

=: y ∈ Y and apply the standard multiscale property for spatial differentiation ∂ fϵ (x)
∂xi

=
1
ϵ

∂ f
∂yi
(x, x/ϵ)+

∂ f
∂xi
(x, x/ϵ), where fϵ(x) = f (x, y) is an arbitrary function depending on two variables x ∈ Ω , y ∈ Y . The

Laplace operators∆ and div

M̂∇


then can be written as follows,

A0 = −

d
i,j=1

∂

∂yi


δij
∂

∂yj


, B0 = −

d
i,j=1

∂

∂yi


mij

∂

∂yj


,

A1 = −

d
i,j=1


∂

∂xi


δij
∂

∂yj


+

∂

∂yi


δij
∂

∂xj


, B1 = −

d
i,j=1


∂

∂xi


mij

∂

∂yj


+

∂

∂yi


mij

∂

∂xj


,

A2 = −

d
i,j=1

∂

∂xj


δij
∂

∂xj


, B2 = −

d
i,j=1

∂

∂xj


mij

∂

∂xj


,

(8)

such that we can identify Aϵ := ϵ−2A0 + ϵ−1A1 + A2 = ∆ and correspondingly Bϵ = div

M̂∇


. We account for the

multiscale nature of strongly heterogeneous environments [17–19] by the following ansatz:

ξ ϵ ≈ ξ0(x, y, t)+ ϵξ1(x, y, t)+ ϵ2ξ2(x, y, t)+ · · · , for ξ ∈ {w, φ} . (9)

Before we can insert (9) into the microscopic formulation (4), we need to approximate the derivative of the nonlinear ho-
mogeneous free energy f := F ′ by a Taylor expansion of the form

f (φϵ) ≈ f (φ0)+ f ′(φ0)(φ
ϵ
− φ0)+

1
2
f ′′(φ0)(φ

ϵ
− φ0)

2
+ O


(φϵ − φ0)

3 , (10)

where φ0 denotes the leading-order term in (9). Substituting (9) and (10) into (4), which we split into two second order
problems as suggested in [14], and using (8) provides the following sequence of problems:

O(ϵ−2) :


B0 [λw0 + 1/λf (φ0)] = 0 in Y 1,

under no flux b.c. and withw0 is Y 1-periodic,
A0φ0 = 0 in Y 1,

with ∇nφ0 = 0 on ∂Y 1
w ∩ ∂Y 2

w and φ0 Y 1-periodic,

(11)

O(ϵ−1) :


B0

λw1 + 1/λf ′(φ0)φ1


= −B1 [λw0 + 1/λf (φ0)] in Y 1,

under no flux b.c. andw1 Y 1-periodic,
A0φ1 = −A1φ0 in Y 1,

with ∇nφ1 = 0 on ∂Y 1
w ∩ ∂Y 2

w and φ1 Y 1-periodic,

(12)

O(ϵ0) :



B0


λw2 +

1
λ


1
2
f ′′(φ0)φ

2
1 + f ′(φ0)φ2


= −


B2 [λw0 + 1/λf (φ0)] + B1


λw1 − 1/λf ′(φ0)φ1


− ∂tA

−1
2 w0 in Y 1,

under no flux b.c. and withw2 Y 1-periodic,
A0φ2 = −A2φ0 − A1φ1 + w0 in Y 1,

with ∇nφ2 = gϵ on ∂Y 1
w ∩ ∂Y 2

w and φ2 Y 1-periodic.

(13)

The first problem (11) immediately implies that the leading-orders φ0 and w0 are independent of the microscale y [18,19].
This suggests the following ansatz forw1 and φ1, i.e.,

w1(x, y, t) = −

d
k=1

ξ kw(y)
∂w0

∂xk
(x, t), φ1(x, y, t) = −

d
k=1

ξ kφ(y)
∂φ0

∂xk
(x, t) = φ1(x, y, t). (14)
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Inserting (14) into (12)2 provides an equation for the correctors ξ kw and ξ kv . The resulting equation for ξ kv can be
immediately written for 1 ≤ k ≤ d as,

ξφ :


−

d
i,j=1

∂

∂yi


δik − δij

∂ξ kφ

∂yj


= −div


ek − ∇yξ

k
φ


= 0 in Y 1, (15)

for ξ kφ(y) Y -periodic with MY1(ξ kφ) = 0 and associated boundary condition n ·

∇ξ kφ + ek


= 0 on ∂Y 1

w ∩ ∂Y 2
w .

To study (12)1, we first rewrite B0

f ′(φ0)φ1


and B1f (φ0) as follows:

B0

f ′(φ0)φ1


= −

d
k,i,j=1

∂

∂yi


mij
∂ξ kφ

∂yj

∂ f (φ0)

∂xk


, B1f (φ0) =

d
i,j=1

∂

∂yi


mij
∂ f (φ0)

∂xj


. (16)

Doing the same forw1 andw0 and using (14) leads then to

−λ

d
k,i,j=1

∂

∂yi


mij


∂xk
∂xj

−
∂ξ kw

∂yj


∂w0

∂xk


= 1/λ

d
k,i,j=1

∂

∂yi


mij


∂xk
∂xj

−
∂ξ kφ

∂yj


∂ f (φ0)

∂xk


, (17)

in Y 1. Since the chemical potential µ(φ) =
δE(φ)
δφ

is scale separated, we finally obtain the reference cell problem for ξ kw ,
1 ≤ k ≤ d for given ξ kφ

−

d
i,j,k=1

∂

∂yi


mik − mij

∂ξ kw

∂yj


= −

d
k,i,j=1

∂

∂yi


mik − mij

∂ξ kφ

∂yj


in Y 1, (18)

where ξ kw(y) is Y -periodic with boundary condition
d

i,j,k=1 ni


mij

∂ξkw
∂yj

− mik


+


mik − mij

∂ξkφ
∂yj


= 0 on ∂Y 1

w ∩ ∂Y 2
w and

MY1(ξ kw) = 0.
The last problem (13) then gives the upscaled equations by a solvability constraint, i.e., the Fredholm alternative. Hence,

the solvability of (13)2 is achieved by setting

−

d
i,k=1


d

j=1


Y1


δik − δij

∂ξ kφ

∂yj


dy


∂2φ0

∂xi∂xk
=
Y 1
w0 + g̃0 (19)

where g̃0 := −
γ

Ch


∂Y1


a1χ∂Y1

w1
+ a1χ∂Y1

w2


do(y). (19) can be written compactly as−∆D̂φ0 := −div


D̂∇φ0


= θ1w0 + g̃0

by (6)1. Applying the same ideas to Eq. (13)1 leads to
Y1


−λ (B2w0 + B1w1)−

1
λ

B1

f ′(φ0)φ1


−

1
λ

B2f (φ0)− ∂tA
−1
2 w0


dy = 0, (20)

where the first two terms can be rewritten with (6)3 by

Y1 − (B2w0 + B1w1) dy = div


M̂w∇w0


. The third integrand in

(20) becomes −B1

f ′(φ0)φ1


= −

d
i,j=1 mij

d
k=1

∂ξkφ
∂yj

∂2f (φ0)
∂xk∂xi

, where we applied the chain rule ∂2f (φ0)
∂xk∂xj

= f ′′(φ0)
∂φ0
∂xk

∂φ0
∂xj

+

f ′(φ0)
∂2φ0
∂xk∂xj

and integration by parts. Add now the term−B2f (φ0) and using (6)2 finally gives−B1

f ′(φ0)φ1


−B2f (φ0) =

div

M̂φ∇f (φ0)


.

These considerations finally lead to the following effective equation for φ0, i.e.,

θ1
∂φ0

∂t
= div


M̂φ/λ∇f (φ0)


+
λ

θ1
div


M̂w∇


div


D̂∇φ0


− g̃0


. (21)

In the case where the homogeneous free energy F is the classical double-well potential F(φ) = 1/4(φ2
−1)2, one can verify

the solvability of (21) along with the arguments in [23].
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