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Chapter 1

Derivation of the Langevin
Equation

In this chapter we derive the Langevin equation from a simplemechanical model
for a small system (that we will refer to as the Brownian particle) that is in con-
tact with a thermal reservoir which is at thermodynamic equilibrium at timet =

0. The full Brownian particle plus thermal reservoir dynamics is assumed to be
Hamiltonian. The derivation proceeds in three steps. First, we derive a closed
stochastic integrodifferential equation for the dynamicsof the Brownian particle,
the Generalized Langevin Equation (GLE) . In the second step, we approximate
the GLE by a finite dimensional Markovian equation in an extended phase space.
Finally, we use singular perturbation theory for Markov processes to derive the
Langevin equation, under the assumption of rapidly decorrelating noise. This
derivation provides a partial justification for the use of stochastic differential equa-
tions, in particular, the Langevin equation, in the modeling of physical systems.

In Section 1.1 we study a simple model for open classical systems and we
derive the Generalized Langevin Equation. The Markovian approximation of the
GLE is studied in Section 1.2. The derivation of the Langevinequation from this
Markovian approximation is studied in Section 1.3. Discussion and bibliographical
remarks are included in Section 1.4. Exercises can be found in Section 1.5.

1.1 Open Classical Systems

We consider a particle in one dimension that is in contact with a thermal reservoir
(heat bath), a system with infinite heat capacity at temperatureβ−1 that interacts

1



2 CHAPTER 1. DERIVATION OF THE LANGEVIN EQUATION

(exchanges energy) with the particle. We will model the reservoir as a system of
infinitely many non-interacting particles which is in thermodynamic equilibrium
at time t = 0. In other words, we will model the heat bath as a system of in-
finitely many harmonic oscillators whose initial energy is distributed according to
the canonical (Boltzmann-Gibbs) distribution at temperatureβ−1.

A finite collection of harmonic oscillators is a Hamiltoniansystem with Hamil-
tonian

H(p,q) =
1

2

N∑

j=1

p2
j +

1

2

N∑

j=1

q2j , (1.1)

where for simplicity we have set all the spring constants{kj}N
j=1 equal to1. The

corresponding canonical distribution is

µβ(dp, dq) =
1

Z
e−βH(p,q) dpdq. (1.2)

Since the Hamiltonian (1.1) is quadratic in both positions and momenta, the mea-
sure (1.2) is Gaussian. We setz = (q, p) ∈ R

2N =: H and denote by〈·, ·〉
the Euclidean inner product in (the Hilbert space)H. Then, for arbitrary vectors
h, b ∈ H we have

E〈z,h〉 = 0, E

(
〈z,h〉〈z,b〉

)
= β−1〈h,b〉. (1.3)

We want to consider an infinite dimensional extension of the above model for the
heat bath. A natural infinite dimensional extension of a finite system of harmonic
oscillators is the wave equation∂2

t ϕ = ∂2
xϕ that we write as a system of equations

∂tϕ = π, ∂tπ = ∂2
xϕ. (1.4)

The wave equation is an infinite dimensional Hamiltonian system with Hamiltonian

H(π, ϕ) =
1

2

∫

R

(
|π|2 + |∂xϕ|2

)
dx. (1.5)

It is convenient to introduce the Hilbert spaceHE with the (energy) norm

‖φ‖2 =

∫

R

(
|π|2 + |∂xϕ|2

)
dx (1.6)

whereφ = (ϕ, π). The corresponding inner product is

〈φ1, φ2〉 =

∫

R

(
∂xϕ1(x)∂xϕ2(x) + π1(x)π2(x)

)
dx (1.7)
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where the overbar denotes the complex conjugate. Using the notation (1.6) we can
write the Hamiltonian for the wave equation as

H(φ) =
1

2
‖φ‖2.

We would like to extend the Gibbs distribution (1.2) to this infinite dimensional
system. However, the expression

µβ(dπdϕ) =
1

Z
e−βH(ϕ,π)Πx∈R dπdϕ (1.8)

is merely formal, since Lebesgue measure does not exist in infinite dimensions.
However, this measure is Gaussian (the HamiltonianH is a quadratic functional in
π andφ) and the theory of Gaussian measures in Hilbert spaces is well developed.
This theory goes beyond the scope of this book1 For our purposes it is sufficient to
note that ifX is a Gaussian random variable in the Hilbert spaceHE with inner
product (1.7) then〈X, f〉 is a scalar Gaussian random variable with mean and
variance

〈X, f〉 = 0, and E

(
〈X, f〉〈X,h〉

)
= β−1〈f, h〉. (1.9)

Notice the similarity between the formulas in (1.3) and (1.9).
We assume that the full dynamics of the particle coupled to the heat bath is

Hamiltonian described by a Hamiltonian function

H(p, q, π, ϕ) = H(p, q) + HHB(π, ϕ) +HI(q, ϕ). (1.10)

We useHHB(π, φ) to denote the Hamiltonian for the wave equation (1.5).H(p, q)

denotes the Hamiltonian of the particle, whereasHI describes the interaction be-
tween the particle and the fieldφ. We assume that the coupling is only through the
positionq andφ, it does not depend on the momentump and the momentum fieldπ.
We assume that the particle is moving in a confining potentialV (q). Consequently:

H(p, q) =
p2

2
+ V (q). (1.11)

Concerning the coupling, we assume that it is linear in the field φ and that it is
translation invariant:

HI(q, ϕ) =

∫

R

ϕ(x)ρ(x − q) dx. (1.12)

1Some discussion about Gaussian measures in Hilbert spaces can be found in Section??.
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The coupling between the particle and the heat bath depends crucially on the func-
tion ρ(x) which is arbitrary at this point.2

Now we make an approximation that will simplify considerably the analysis:
since the particle moves in a confining potential (think of a quadratic potential),
we can assume that its position does not change too much. Consequently, we can
perform a Taylor series expansion in (1.12) which, togetherwith an integration by
parts gives (see Exercise 1)3

HI(q, ϕ) ≈ q

∫

R

∂xϕ(x)ρ(x) dx. (1.13)

The coupling now is linear in bothq andϕ. This will enable us to integrate out
explicitly the fieldsϕ andπ from the equations of motion and to obtain a closed
equation for the dynamics of the particle.

Putting (1.11), (1.5) and (1.13) together, the Hamiltonian(1.10) becomes

H(p, q, π, φ) =
p2

2
+ V (q) +

1

2

∫

R

(
|π|2 + |∂xϕ|2

)
dx+ q

∫

R

∂xϕ(x)ρ(x) dx.

(1.14)
Now we can derive Hamilton’s equations of motion for the coupled particle-field
model (1.14):

q̇ =
∂H
∂p

, ṗ = −∂H
∂q

, (1.15a)

∂tϕ =
δH
δπ

, ∂tπ = −δH
δϕ

, (1.15b)

where δH
δ· stands for the functional derivative.4 Carrying out the differentiations

we obtain

q̇ = p, ṗ = −V ′(q) −
∫

R

∂xϕ(x)ρ(x) dx, (1.16a)

∂tϕ = π, ∂tπ = ∂2
xϕ+ q∂xρ. (1.16b)

Our goal now is to solve equations (1.16b), which is a system of linear inhomo-
geneous differential equations and then substitute into (1.16a). We will use the

2In the terminology of electrodynamics,ρ plays the role of acharge density.
3Again, in the terminology of electrodynamics this is calledthedipole approximation.
4We remind the reader that for a functional of the formH(φ) =

R

R
H(φ, ∂xφ) dx the functional

derivative is given byδH
δφ

= ∂H
∂φ

−
∂

∂x
∂H

∂(∂xρ)
. We apply this definition to the functional (1.14) to

obtain δH
δπ

= π, δH
δϕ

= −∂2
xϕ − q∂xρ.
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variation of constants formula (Duhamel’s principle). It is more convenient to
rewrite (1.16) in a slightly different form. First, we introduce the operator

A =

(
0 1
∂2

x 0

)
, (1.17)

acting on functions inHE with inner product (1.7). It is not hard to show that the
A is an antisymmetric operator in this space (see Exercise 2).Furthermore, we
introduce the notationα = (α1(x), 0) ∈ HE with ∂xα1(x) = ρ(x). Noticing that

Aα = (0, ∂xρ),

we can rewrite (1.16b) in the form

∂tφ = A(φ+ qα) (1.18)

with φ = (ϕ, π). Furthermore, the second equation in (1.16) becomes

ṗ = −V ′(q) − 〈φ, α〉. (1.19)

Finally, we introduce the functionψ = φ+ qα to rewrite

∂tψ = Aψ + pα. (1.20)

Similarly, we introduceψ in (1.19) to obtain

ṗ = −V ′
eff (q) − 〈ψ,α〉, (1.21)

where
Veff (q) = V (q) − 1

2
‖α‖2q2. (1.22)

Notice that
‖α‖2 = ‖ρ‖2

L2 =: λ.

The parameterλ measures the strength of the coupling between the particle and
the heat bath. The correction term in the potentialVeff (q) is essentially due to the
way we have chosen to write the equations of motion for the particle-field system
and it is not fundamental; see Exercise 1.

The solution of (1.20) is

ψ(t) = eAtψ(0) +

∫ t

0
eA(t−s)p(s)α ds.
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We substitute this in (1.21) to obtain

ṗ = −V ′
eff (q) − 〈ψ,α〉

= −V ′
eff (q) −

〈
eAtψ(0), α

〉
−
∫ t

0

〈
eA(t−s)α,α

〉
p(s) ds

= −V ′
eff (q) −

∫ t

0
γ(t− s)p(s) ds+ F (t)

where
F (t) =

〈
ψ(0), e−Atα

〉
(1.23)

and
γ(t) =

〈
e−Atα,α

〉
(1.24)

Notice thatψ(0) = φ(0) + q(0)α is a Gaussian field with mean and covariance,
using (1.9),

E〈ψ(0), f〉 = q(0)〈α, f〉 =: µf

and
E ((〈ψ(0), f〉 − µf ) (〈ψ(0), h〉 − µh)) = β−1〈f, h〉.

To simplify things we will setq(0) = 0. ThenF (t) is a mean zero stationary
Gaussian process with autocorrelation function

E(F (t)F (s)) = E
(〈
ψ(0), e−Atα

〉 〈
ψ(0), e−Asα

〉)

= β−1
〈
e−Atα, e−Asα

〉

= β−1γ(t− s),

where we have used (1.9). Consequently, the autocorrelation function of the stochas-
tic forcing in (1.23) is precisely the kernel (times the temperature) of the dissipation
term in the equation forp. This is an example of thefluctuation-dissipation theo-
rem .

To summarize, we have obtained a closed equation for the dynamics of the
particle, theGeneralized Langevin Equation

q̈ = −V ′
eff (q) −

∫ t

0
γ(t− s)q̇(s) ds + F (t), (1.25)

with F (t) being a mean zero stationary Gaussian processes with autocorrelation
function given by the fluctuation–dissipation theorem

E(F (t)F (s)) = β−1γ(t− s). (1.26)
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It is clear from formula (1.24) and the definition ofα that the autocorrelation func-
tion γ(t) depends only on the densityρ.5 In fact, we can show that (see Exercise 3)
that

γ(t) =

∫

R

|ρ̂(k)|2eiktdk, (1.27)

whereρ̂(k) denotes the Fourier transform ofρ.
Let us now make several remarks on the Generelized Langevin Equation (1.25)

(GLE). First, notice that the GLE is Newton’s equation of motion for the particle,
augmented with two additional terms: a linear dissipation term which depends on
the history of the particle position and a stochastic forcing term which is related
to the the dissipation term through the fluctuation–dissipation theorem (1.26). The
fact that the fluctuations (noise) and the dissipation in thesystems satisfy such a
relation is not surprising, since they have the same source,namely the interaction
between the particle and the field. Is is important to note that the noise (and also the
fact that it is Gaussian and stationary) in the GLE is due to our assumption that the
heat bath is at equilibirum at timet = 0, i.e. that the initial equations of the wave
equation are distributed according to the (Gaussian) Gibbsmeasure (1.8). Perhaps
surprisingly, the derivation of the GLE and the fluctuation dissipation theorem are
not related to our assumption that the heat bath is describedby a field, i.e. it
is a dynamical system with infinitely many degrees of freedom. We could have
arrived at the GLE and the fluctuation–dissipation theorem even if we had only
one oscillator in the “heat bath”. See Exercise 6.

Furthermore, the autocorrelation function of the noise depends only on the
coupling functionρ(x): different choices of the coupling function lead to different
noise processesF (t). 6

It is also important to emphasize the fact that the GLE (1.25)isequivalentto the
original Hamiltonian dynamics (1.14) with random initial conditions distributed
according to (1.8). So far, no approximation has been made. We have merely used
the linearity of the dynamics of the heat bath and the linearity of the coupling in
order to integrate out the heat bath variables by using the variation of constants
formula.

Finally we remark that an alternative way for writing the GLEis

q̈ = −V ′(q) −
∫ t

0
D(t− s)q(s) ds+ F (t) (1.28)

5Assuming, of course, that the heat bath is described by a waveequation, i.e. assuming thatA is
the wave operator.

6In fact, the autocorrelation function depends also on the operatorA in (1.17).
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with

D(t) = 〈AeAtα,α〉. (1.29)

The fluctuation-dissipation theorem takes the form

γ̇(t) = D(t). (1.30)

See Exercise 7. When writing the GLE in the form (1.28) there is no need to
introduce an effective potential or to assume thatq(0) = 0.

1.2 The Markovian Approximation

From now on we will ignore the correction in the potential (1.22). We rewrite the
GLE (1.25):

q̈ = −V ′(q) −
∫ t

0
γ(t− s)q̇(s) ds + F (t), (1.31)

together with the fluctuation-dissipation theorem (1.26).Equation (1.31) is a non-
Markovian stochastic equation, since the solution at timet depends on the entire
past. In this section we show that when autocorrelation function γ(t) decays suf-
ficiently fast, then the dynamics of the particle can be described by a Markovian
system of stochastic differential equations in an extendedphase space. The basic
observation that was already made in Chapter??, Exercise?? that a one dimen-
sional mean zero Gaussian stationary with continuous pathsand an exponential
autocorrelation function is necessarily the Ornstein-Uhlenbeck process. This is
the content of Doob’s theorem . Consequently, if the memory kernel (autocorre-
lation function)γ(t) is decaying exponentially fast, then we expect that we can
describe the noise in the GLE by adding a finite number of auxiliary variables.
We can formalize this by introducing the concept of aquasi-Markovian process
quasi-Markovian process:

Definition 1.1. We will say that a stochastic processXt is quasi-Markovian if it
can be represented as a Markovian stochastic process by adding a finite number of
additional variables: there exists a finite dimensional stochastic processYt so that
{Xt, Yt} is a Markov process.

In the following result we will use the notation〈·, ·〉 to denote the Euclidean
inner product.
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Proposition 1.2. Let λ ∈ R
d, A ∈ R

d×d, positive definite, and assume that the
autocorrelation functionγ(t) is given by

γ(t) = 〈e−Atλ, λ〉. (1.32)

Then the GLE(1.31)is equivalent to the SDE

q̇(t) = p(t), (1.33a)

ṗ(t) = −V ′(q(t)) + 〈λ, z(t)〉, (1.33b)

ż(t) = −p(t)λ−A z(t) + ΣẆ (t), z(0) ∼ N (0, β−1I), (1.33c)

wherez : R
+ 7→ R

m, λ ∈ R
m, Σ ∈ R

m×m and the matrixΣ satisfies

ΣΣT = β−1(A+AT ). (1.34)

Remark 1.3. Notice that the formula for the autocorrelation function(1.32) is
similar to (1.24). However, the operatorA in (1.24) is the wave operator(1.17),
i.e. the generator of a unitary group, whereas the operatorA (or, rather,−A) that
appears in(1.32)is the generator of the contraction semigroupe−At, i.e. a dissipa-
tive operator. The source of the noise in(1.25)and in(1.33)is quite different, even
though the have the same effect, when the autocorrelation function is exponentially
decaying.

Proof. The solution of (1.33c) is

z(t) = e−Atz(0) +

∫ t

0
e−A(t−s)ΣdW (s) −

∫ t

0
e−A(t−s)λp(s) ds. (1.35)

We substitute this into (1.33b) to obtain

ṗ = −V ′(q) −
∫ t

0
γ(t− s)p(s) ds + F (t)

with
γ(t) = 〈e−Atλ, λ〉

and

F (t) =

〈
λ, e−Atz(0) +

∫ t

0
e−A(t−s)ΣdW (s)

〉

=: 〈λ, y(t)〉 ,
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where

y(t) = S(t)z(0) +

∫ t

0
S(t− s)ΣdW (s)

with S(t) = e−At. With our assumptions onZ(0) and (1.34),y(t) is a mean zero
stationary Gaussian process with covariance matrix

Q(t− s) = E(yT (t)y(s)) = β−1S(|t− s|). (1.36)

To see this we first note that (using the summation convention)

E(yi(t)yj(s)) = Siℓ(t)Sjρ(t)E(zℓ(0)zρ(0)) +

∫ t

0

∫ s

0
Siρ(t− ℓ)ΣρkSjn(s − τ)Σnkδ(ℓ− τ) dℓdm

= β−1Siρ(t)Sjρ(s) +

∫ min(t,s)

0
Siρ(t− τ)ΣρkΣnkSjn(s− τ) dτ.

Consequently, and using (1.34),

E(yT (t)y(s)) = β−1S(t)ST (s) +

∫ min(t,s)

0
S(t− τ)ΣT ΣST (s− τ) dτ

= β−1S(t)

(
I +

∫ min(t,s)

0
S(−τ)(A+AT )ST (−τ) dτ

)
ST (s).

Without loss of generality we may assume thats 6 t. Now we claim that
(
I +

∫ min(t,s)

0
S(−τ)(A+AT )ST (−τ) dτ

)
ST (s) = S(−s).

To see this, notice that this equation is equivalent to

I +

∫ t,s

0
S(−τ)(A +AT )ST (−τ) dτ = S(s)ST (−s).

This equation is clearly valid ats = 0. We differentiate to obtain the identity

S(−s)(A+AT )ST (−s) =
d

dt
S(s)ST (−s),

which is true for alls. This completes the proof of (1.36). Now we calculate, with
s 6 t,

E(F (t)F (s)) = E (〈λ, y(t)〉〈λ, y(s)〉)
= 〈Q(t− s)λ, λ〉 = β−1〈e−Atλ, λ〉
= β−1γ(t− s)

and the proposition is proved.
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Example 1.4. Consider the casem = 1. In this case the vectorλ and the matrix
A become scalar quantities. The SDE(1.33)becomes

q̇(t) = p(t),

ṗ(t) = −V ′(q(t)) + λz(t),

ż(t) = −λp(t) − αz(t) +
√

2αβ−1Ẇ (t), z(0) ∼ N (0, β−1).

The autocorrelation function is

γ(t) = λ2e−αt.

Example 1.5. Consider now the case

A =

(
0 1
1 −γ

)
.

The Markovian GLE takes the form

q̇ = p, (1.37a)

ṗ = −V ′(q) + 〈λ, z〉, (1.37b)

ż1 = (z2 + λ1p), (1.37c)

ż2 = (−z1 − γz2 − λ2p) +
√

2β−1α2 Ẇ . (1.37d)

The generator of the dynamics (1.33) is

L = p∂q − ∂qV ∂p + 〈λ, z〉∂p − pλ · ∇z −Az · ∇z +
1

2
β−1A : Dz, (1.38)

whereA : Dz denotes the Frobenius inner product betweenA and the Hessian with
respect toz, A : Dz =

∑d
i,j=1Aij

∂2

∂zi∂zj
.7 The Fokker-Planck operator is

L∗ = −p∂q + ∂qV ∂p − 〈λ, z〉∂p + pλ · ∇z + ∇z (Az· ) +
1

2
β−1A : Dz. (1.39)

When the potentialV (q) is confining then the processX(t) := (q(t), p(t), z(t))

has nice ergodic properties. We recall that the Hamiltonianof the system isH(p, q) =
1
2p

2 + V (q).

7In fact, the last term in (1.38) should readβ−1As : Dz , whereAs = 1
2
(A + AT ) denotes the

symmetric part ofA. However sinceDz is symmetric we can write it in the form1
2
β−1A : Dz .
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Proposition 1.6. Assume that the potentialV in (1.33) is confining. Then the
processX(t) := (q(t), p(t), z(t)) is ergodic with invariant distribution

ρβ(q, p, z) =
1

Z
e−β(H(p,q)+ 1

2
‖z‖2), Z =

(
2πβ−1

)d+1
∫

R

e−βV (q) dq. (1.40)

Proof. We only prove that (1.40) is an invariant distribution. The uniqueness is
discussed in Section 1.4. We have to check thatρβ is a solution of the stationary
Fokker-Planck equation

L∗ρβ = 0.

We have (
− p∂q + ∂qV ∂p

)
e−βH(q,p) = 0.

Furthermore
(−〈λ, z〉∂p + pλ · ∇z) e

−β( 1
2
p2+ 1

2
‖z‖2) = 0.

Finally

∇z ·
(
Az +

1

2
β−1A∇z

)
e−

1
2
β‖z‖2

= 0.

The formula for the partition function follows from Gaussian integration.

Remark 1.7. Notice that the invariant distribution is independent of the vectorλ
and the matrixA.

As in the case of the Langevin dynamics, we can work in the weightedL2

spaceL2(R2+d; ρβ). In this space the generator (1.38) can be naturally decom-
posed into its symmetric and antisymmetric parts similarlyto the generator of the
Langevin dynamics that was studied in Chapter??. We denote byAa andAs the
antisymmetric and symmetric parts of the matrixA, respectively.

Proposition 1.8. The genrator(1.38)can be written as

L = A + S, (1.41)

where
A = p∂q − ∂qV ∂p + 〈λ, z〉∂p − 〈Aaz,∇z〉

and
S = 〈−Asz,∇z〉 + β−1As : Dz.

Furthermore,A andS are antisymmetric and symmetric operators, respectively,
with respect to theL2(R2+d; ρβ) inner product.

The proof of this proposition is left as an exercise.
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1.3 Derivation of the Langevin Equation

Now we are ready to derive the Langevin equation

q̇ = p, ṗ = −V ′(q) − γp+
√

2γβ−1Ẇ , (1.42)

and to obtain a formula for the friction coefficientγ. We can derive the dynam-
ics (1.42) from the GLE (1.31) in the limit where the correlation time of the noise
becomes very small,γ(t) → δ(t). This corresponds to taking the coupling in the
full Hamiltonian dynamics (1.14) to be localized,ρ(x) → δ(x).

We focus on the Markovian approximation (1.33) with the family of autocor-
relation functions

γε(t) =
1

ε2
〈e−

A

ε2
tλ, λ〉.

This corresponds to rescalingλ andA in (1.33) according toλ 7→ λ/ε andA 7→
A/ε2. Equations (1.33) become

q̇ε(t) = pε(t), (1.43a)

ṗε(t) = −V ′(qε(t)) +
1

ε
〈λ, zε(t)〉, (1.43b)

żε(t) = −1

ε
pε(t)λ− 1

ε2
A zε(t) +

1

ε
ΣẆ (t), zε(0) ∼ N (0, β−1I),(1.43c)

where (1.34) has been used.

Proposition 1.9. Let
{
qε(t), pε(t), zε(t)

}
denote the solution of(1.43) and as-

sume that the matrixA is invertible. Then
{
qε(t), pε(t)

}
converges weakly to the

solution of the Langevin equation(1.42)where the friction coefficient is given by
the formula

γ(t) = 〈λ,A−1λ〉. (1.44)

Remark 1.10. Notice that(1.44)is equivalent to

γ =

∫ +∞

0
γ(t) dt

as well as
γ = 〈λ, φ〉, Aφ = λ.

These formulas are similar to the ones that we obtained in Chapter ?? for the
diffusion coefficient of a Brownian particle in a periodic potential as well as the
ones that we will obtain in Chapter 2 in the context of the Green-Kubo formalism.
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Proof. The backward Kolmogorov equation corresponding to (1.43) is

∂uε

∂t
=

1

ε2
L0 +

1

ε
L1 + L2 (1.45)

with

L0 = −〈Az,∇z〉 + β−1A : Dz,

L1 = 〈λ, z〉∂p − p〈λ,∇z〉
L2 = p∂q − ∂qV ∂p.

We look for a solution to (1.45) in the form of a power series expansion inε:

uε = u0 + εu1 + ε2u2 + . . . .

We substitute this into (1.45) and equate powers ofε to obtain the sequence of
equations

L0u0 = 0, (1.46a)

−L0u1 = L1u0, (1.46b)

−L0u2 = L1u1 + L2u0 −
∂u0

∂t
. (1.46c)

. . . = . . .

From the first equation we deduce that to leading order the solution of the Kol-
mogorov equation is independent of the auxiliary variablesz, u0 = u(q, p, t). The
solvability of the second equation reads

∫

Rd

L1u0e
−β

2
‖z‖2

dz = 0,

which is satisfied, since

L1u0 = 〈λ, z〉∂u
∂t
.

The solution to the equation

−L0u1 = 〈λ, z〉∂u
∂t

is

u1(q, p, t) = 〈(AT )−1λ, z〉∂u
∂t
,
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plus an element in the null space ofL0, which, as we know from similar calculation
that we have already done, for example in Section?? will not affect the limiting
equation.

Now we use the solvability condition for (1.46c) to obtain the backward Kol-
mogorov equation corresponding to the Langevin equation. The solvability condi-
tion gives

∂u

∂t
= L2u+ 〈L1u1〉β,

where

〈·〉β :=
(
2πβ−1

)−d
∫

Rd

·e−β
2
‖z‖2

dz.

We calculate

〈L1u1〉β = β−1〈(AT )−1λ, λ〉∂
2u

∂p2
− 〈(AT )−1λ, λ〉p∂u

∂p
.

Consequently,u is the solution of the PDE

∂u

∂t
=
(
p∂q − ∂qV ∂p − γp∂p + β−1∂2

p

)
u,

whereγ is given by (1.44). This is precisely the backward Kolmogorov equation
of the Langevin equation (1.42).

1.4 Discussion and Bibliography

.
Section 1.1 is based on [42]. The Generalized Langevin equation was studied

extensively in [19, 20, 21] where existence and uniqueness of solutions as well as
ergodic properties were established. An early reference onthe construction of heat
baths is [32]. The ergodic properties of a chain of anharmonic oscillators, coupled
to two Markovian heat baths (i.e. with an exponential autocorrelation function) at
different temperatures were studied in [10, 11, 9, 43]. The Markovian approxima-
tion of the Generalized Langevin equation was studied in [29]. See also [37].

A natural question that arises is whether it is possible to approximate the GLE
equation (1.25) with an arbitrary memory kernel by a Markovian system of the
form (1.33). This essentially a problem in approximation theory that was studied
in [46, 26, 25]. A systematic methodology for obtaining Markovian approxima-
tions to the GLE, which is based on the continued fraction expansion of the Laplace
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transform of the autocorrelation function of the noise in the GLE, was introduced
by Mori in [36].

Another model for an open classical system that has been studied extensively
is based on a finite dimensional heat bath. A calculation similar to the one that
we have done in Section 1.1 leads to a GLE in which the noise depends on the
number of particles in the heat bath. One then passes to the thermodynamic limit
i.e. the limit where the number of particles in the heat bath becomes infinite to
obtain the GLE; see Exercise 6. This model is called theKac–Zwanzig model
and was introduced in [13, 49]. See also [12]. Further information on the Kac-
Zwanzig model can be found in [33, 5, 14, 2]. Nonlinear coupling between the
distinguished particle and the harmonic heat bath is studied in [30]. The Kac-
Zwanzig model can be used in order to compare between the results of reaction rate
theory that was developed in Chapter?? with techniques for calculating reaction
rates that are appropriate for Hamiltonian systems such astransition state theory.
See [16, 39, 1, 38].

We emphasize the fact that the GLE obtained in sections?? and?? from the
coupled particle-field model (1.10) isexact. Of course, all the information about
the environment is contained in the noise process and the autocorrelation function.
The rather straightforward derivation of the GLE is based onthe linearity of the
thermal reservoir and on the linear coupling. Similar derivations are also possible
for more general Hamiltonian systems of the form (??) using projection operator
techniques. This approach is usually referred to as theMori-Zwanzig formalism.
This approach is developed in many books on non-equilibriumstatistical mechan-
ics [35, 28, 50]. It is possible to derive Langevin (or Fokker-Planck) equations in
some appropriate asymptotic limit, for example, in the limit as the ratio between
the mass of the particles in the bath and the (much heavier) Brownian particle tends
to 0. See [35, 47]. This asymptotic limit goes back to Einstein’soriginal work on
Brownian motion. A rigorous study of such a model is presented in [8].

1.5 Exercises

1. Derive (1.13) from (1.12). Show that the next term in the expansion compen-
sates for the correction term in the effective potential (1.22).

2. Show that the operatorA defined in (1.17) is antisymmetric in the Hilbert space
HE with inner product (1.7). Conclude that(eAt)∗ = e−At. Prove that the
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one parameter family of operatorsecAt forms aunitary group (This is usually
referred to asStone’s theorem . See [40].

3. Solve the wave equation (1.4) by taking the Fourier transform. In particular,
calculatee−At in Fourier space. Use this to prove (1.27).

4. Solve the GLE (1.31) for the free particleV ≡ 0 and when the potential is
quadratic (hint: use the Laplace transform, see [29]).

5. (a) Consider a system ofN harmonic oscillators governed by the Hamiltonian

H(q, p) =

N∑

j=1

p2
j

2mj
+
kj

2
q2j

q, p ∈ R
N . Assume that the initial conditions are distributed according

to the distribution1
Z
e−βH(p,q) with β > 0. Compute the average kinetic

energy for this system as a function of time.

(b) Do the same calculation for the Hamiltonian

H(q, p) =
1

2
〈Ap,p〉 +

1

2
〈Bq,q〉

whereq, p ∈ RN , A, B ∈ RN×N are symmetric strictly positive definite
matrices and the initial conditions are distributed according to 1

Z
e−βH(p,q).

6. (The Kac-Zwanzig model) . Consider the Hamiltonian

H(QN , PN , q, p) =
P 2

N

2
+ V (QN ) +

N∑

n=1

[(
p2

n

2mn
+

1

2
mnω

2
nq

2
n

)
− λµnqnQN

]
,(1.47)

where the subscriptN in the notation for the position and momentum of the
distinguished particle,QN andPN emphasizes their dependence on the number
N of the harmonic oscillators in the heat bath,V (Q) denotes the potential ex-
perienced by the Brownian particle andλ > 0 is the coupling constant. Assume
that the initial conditions of the Brownian particle are deterministic and that the
those of the particles in the heat bath are Gaussian distributed according to the
distribution 1

Z
e−βH(p, q).

(a) Obtain the Generalized Langevin equation and prove the fluctuation–dissipation
theorem.
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(b) Assume that the frequencies{ωn}N
n=1 are random variables. Investigate

under what assumptions on their distribution it is possibleto pass to the
thermodynamic limit (see [14]).

7. Derive equations (1.28), (1.29) and (1.30).

8. Prove Proposition 1.8.

9. Analyze the modelds studied in this paper in the multidimensional case, i.e.
when the Brownian particle is ad–dimensional Hamiltonian system.



Chapter 2

Linear Response Theory for
Diffusion Processes

In this chapter we study the effect of a weak external forcingto a system at equilib-
rium. The forcing moves the system away from equilibrium andwe are interested
in understanding the response of the system to this forcing.We study this problem
for ergodic diffusion processes using perturbation theory. In particular, we develop
linear response theory. The analysis of weakly perturbed systems leads to funda-
mental results such as thefluctuation-dissipation theoremand to the Green-Kubo
formula that enables us to calculate transport coefficients.

Linear response theory is developed in Section 2.1. The fluctuation-dissipation
theorem is presented in Section 2.2. Einstein’s relation, The Green-Kubo formula
and the fluctuation-dissipation theorem are studied in Section 2.3. Discussion and
bibliographical remarks are included in Section 2.4. Exercises can be found in
Section 2.5.

2.1 Linear Response Theory

The (somewhat abstract) setting that we will consider in thefollowing. Let Xt

denote a stationary dynamical system with state spaceX and invariant measure
µ(dx) = f∞(x) dx. We probe the system by adding a time dependent forcing
εF (t) with ε ≪ 1 at timet0.1. Our goal is to calculate the distribution function
f ε(x, t) of the perturbed systemsXε

t , ε ≪ 1, in particular in the long time limit

1The natural choice ist0 = 0 Sometimes it is convenient to taket0 = −∞.

19
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t → +∞. We can then calculate the expectation value of observablesas well as
correlation functions.

We assume that the distribution functionf ε(x, t) satisfies a linear kinetic equa-
tion e.g. the Liouville or the Fokker-Planck equation:2

∂f ε

∂t
= L∗ εf ε, (2.1a)

f ε
∣∣
t=t0

= f∞. (2.1b)

The choice of the initial conditions reflects the fact that att = t0 the system is at
equilibrium.

The operatorL∗ ε can be written in the form

L∗ ε = L∗
0 + εL∗

1, (2.2)

whereL∗
0 denotes the Liouville or Fokker-Planck operator of the unperturbed sys-

tem andL∗
1 is related to the external forcing. Throughout this sectionwe will

assume thatL1 is of the form

L∗
1 = F (t) ·D, (2.3)

whereD is some linear (differential) operator. Sincef∞ is the unique equilibrium
distribution, we have that

L∗
0f∞ = 0. (2.4)

Before we process with the analysis of (2.1) we present a few examples.

Example 2.1. (A deterministic dynamical system). LetXt be the solution of the
differential equation

dXt

dt
= h(Xt), (2.5)

on a (possibly compact) state spaceX. We add a weak time dependent forcing to
obtain the dynamics

dXt

dt
= h(Xt) + εF (t). (2.6)

2Note that, in order to be consistent with the notation that wehave used previously in these notes,
in (2.1a) we useL∗ instead ofL, since the operator that appears in the Liouville or the Fokker-Planck
equation is the adjoint of the generator.
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We assume that the unperturbed dynamics has a unique invariant distributionf∞
which is the solution of the stationary Liouville equation

∇ ·
(
h(x)f∞

)
= 0, (2.7)

equipped with appropriate boundary conditions. The operator L∗ ε in (2.2)has the
form

L∗ ε· = −∇ ·
(
h(x) ·

)
− εF (t) · ∇ · .

In this example, the operatorD in (2.3) isD = −∇.

A particular case of a deterministic dynamical system of theform (2.5), and the
most important in statistical mechanics, is that of anN -body Hamiltonian system.

Example 2.2. (A stochastic dynamical system). LetXt be the solution of the
stochastic differential equation

dXt = h(Xt) dt + σ(Xt) dWt, (2.8)

onR
d, whereσ(x) is a positive semidefinite matrix and where the Itô interpretation

is used. We add a weak time dependent forcing to obtain the dynamics

dXt = h(Xt) dt+ εF (t) dt + σ(Xt) dWt. (2.9)

We assume that the unperturbed dynamics has a unique invariant distributionf∞
which is the solution of the stationary Fokker-Planck equation

−∇ ·
(
h(x)f∞

)
+

1

2
D2 :

(
Σ(x)f∞

)
= 0, (2.10)

whereΣ(x) = σ(x)σT (x). The operatorL∗ ε in (2.2)has the form

L∗ ε· = −∇ ·
(
h(x) ·

)
+

1

2
D2 :

(
Σ(x) ·

)
− εF (t) · ∇.̇

As in the previous example, the operatorD in (2.3) isD = −∇.

Example 2.3. A particular case of Example 2.2 is the Langevin equation:

q̈ = −∇V (q) + εF (t) − γq̇ +
√

2γβ Ẇ . (2.11)

Writing (2.13)as a system of SDEs we have

dqt = pt dt, dpt = −∇V (qt) dt + εF (t) dt − γpt dt+
√

2γβ dWt. (2.12)

For this example we haveD = −∇p and, assuming thatV is a confining potential,
f∞ = 1

Z
e−βH(p,q), H(p, q) = 1

2p
2 + V (q). We will study this example in detail

later on.
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Example 2.4. Consider again the Langevin dynamics with a time-dependenttem-
perature. The perturbed dynamics is

dqt = pt dt, dpt = −∇V (qt) dt − γpt dt+
√

2γβ−1(1 + εT (t)) dWt, (2.13)

with 1 + εT (t) > 0. In this case the operatorD is

D = γβ−1∆p.

The general case where both the drift and the diffusion are perturbed is consid-
ered in Exercise 1.

Now we proceed with the analysis of (2.1). We look for a solution in the form
of a power series expansion inε:

f ε = f0 + εf1 + . . . . (2.14)

We substitute this into (2.1a) and use the initial condition(2.1b) to obtain the equa-
tions

∂f0

∂t
= L∗

0f0, f0

∣∣
t=0

= f∞, (2.15a)

∂f1

∂t
= L∗

0f1 + L∗
1f0, f1

∣∣
t=0

= 0. (2.15b)

The only solution to (2.15a) is

f0 = f∞.

We use this into (2.15b) and use (2.3) to obtain

∂f1

∂t
= L∗

0f1 + F (t) ·Df∞, f1

∣∣
t=0

= 0.

We use the variation of constants formula to solve this equation:

f1(t) =

∫ t

t0

eL
∗
0(t−s)F (s) ·Df∞ ds. (2.16)

It is possible to calculate higher order terms in the expansion forf ε; see Exercise 2.
For our purposes the calculation off1(t) is sufficient.

Now we can calculate the deviation in the expectation value of an observable
due to the external forcing. Let〈·〉eq and 〈·〉 denote the expectation value with
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respect tof∞ andf ε, respectively. LetA(·) be an observable (phase-space func-
tion) and denote byA(t) the deviation of its expectation value from equilibrium,
to leading order:

A(t) := 〈A(Xt)〉 − 〈A(Xt)〉eq
=

∫
A(x)

(
f ε(x, t) − feq(x)

)
dx

= ε

∫
A(x)

(∫ t

t0

eL
∗
0(t−s)F (s) ·Df∞ ds

)
dx.

Assuming now that we can interchange the order of integration we can rewrite the
above formula as

A(t) = ε

∫
A(x)

(∫ t

t0

eL
∗
0(t−s)F (s) ·Df∞ ds

)
dx

= ε

∫ t

t0

(∫
A(x)eL

∗
0(t−s) ·Df∞ dx

)
ds

=: ε

∫ t

t0

RL0,A(t− s)F (s) ds, (2.17)

where we have defined theresponse function

RL0,A(t) =

∫
A(x)eL

∗
0t ·Df∞ dx (2.18)

We set now the lower limit of integration in (2.17) to bet0 = −∞ (we extend
the definition ofRL0,A(t) in (2.18) to be0 for t < 0) and assume thatRL0,A(t)

decays to0 ast → +∞ sufficiently fast so that we can extend the upper limit of
integration to+∞ to write

A(t) = ε

∫ +∞

−∞
RL0,A(t− s)F (s) ds, (2.19)

As expected (since we have used linear perturbation theory), the deviation of the
expectation value of an observable from its equilibrium value is a linear function
of the forcing term. Notice also that (2.19) has the form of the solution of a linear
differential equation withRL0,A(t) playing the role of the Green’s function. If we
consider a delta-like forcing att = 0, F (t) = δ(t), then the above formula gives

A(t) = εRL0,A(t).
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Thus, the response function gives the deviation of the expectation value of an ob-
servable from equilibrium for a delta-like force.

Consider now a constant force that is exerted to the system attime t = 0,
F (t) = FΘ(t) whereΘ(t) denotes the Heaviside step function. For this forc-
ing (2.17) becomes

A(t) = εF

∫ t

0
RL0,A(t− s) ds. (2.20)

Example 2.5(Stochastic Resonance, see Sec.??). Linear response theory provides
us with a very elegant method for calculating the noise amplification factor for
a particle moving in a double well potential in the presence of thermal fluctua-
tions under the influence of a weak external forcing. We consider the model (cf.
eqn.(??))

dXt = −V ′(Xt) dt +A0 cos(ω0t) dt+
√

2β−1 dW. (2.21)

Our goal is to calculate the average position〈Xt〉 in the regimeA0 ≪ 1. We can
use(2.17)and (2.18). The generator of the unperturbed dynamics is the generator
of the reversible dynamics

dXt = −V ′(Xt) dt +
√

2β−1 dWt.

We have

D = − ∂

∂x
, f∞(x) =

1

Z
e−βV (x), F (t) = cos(ω0t).

The observable that we are interested in is the particle position. The response
function is

RL0,x(t) =

∫
xeL

∗
0t

(
− ∂

∂x
f∞(x)

)
dx

= β

∫ (
eL0tx

)
V ′(x)f∞(x) dx

= β〈XtV
′(Xt)〉eq.

Let now{λℓ, φℓ}∞ℓ=0 denote the eigenvalues and eigenfunctions of the unperturbed
generator(??). We calculate (see Exercise??)

〈XtV
′(Xt)〉eq =

∞∑

ℓ=1

gℓe
−λℓt
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with

gℓ = 〈x, φℓ〉f∞〈V ′(x), φℓ〉f∞ ,

with 〈g, h〉f∞ =
∫
g(x)h(x)f∞(x) dx. Consequently (remember that〈Xt〉eq = 0;

furthermore, to ensure stationarity, we have sett0 = −∞)

〈Xt〉 = βA0

∫ t

−∞

∞∑

ℓ=1

gℓe
−λℓ(t−s) cos(ω0s) ds

=
βA0

2

∞∑

ℓ=1

gℓRe

(
eiω0t

λℓ + iω0

)
.

We introduce now thesusceptibility

χ(ω) = χ′(ω) − iχ′′(ω) =
∞∑

ℓ=1

gℓ

λℓ + iω
,

to rewrite

〈Xt =〉x̄ cos(ω0t− φ̄) (2.22)

with

x̄ = βA0|χ(ω0)| and φ̄ = arctan

(
χ′′(ω0)

χ′′(ω0)

)
. (2.23)

The noise amplification factor (see eqn.), in the linear response approximation is

η = β|χ(ω0)|2. (2.24)

As expected, it is independent of the amplitude of the oscillations. and it depends
only on the spectrum of the generator of the unperturbed dynamics and the tem-
perature.

2.2 The Fluctuation–Dissipation Theorem

In this section we establish a connection between the response function (2.18) and
stationary autocorrelation functions. LetXt be a stationary Markov process in
R

d with generatorL and invariant distributionf∞ and letA(·) andB(·) be two
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observables. The stationary autocorrelation function〈A(Xt)B(X0)〉eq (see Equa-
tion (??)) can be calculated as follows

κA,B(t) := 〈A(Xt)B(X0)〉eq
=

∫ ∫
A(x)B(x0)p(x, t|x0, 0)f∞(x0) dxdx0

=

∫ ∫
A(x)B(x0)e

L∗tδ(x− x0)f∞(x0) dxdx0

=

∫ ∫
eLtA(x)B(x0)δ(x− x0)f∞(x0) dxdx0

=

∫
eLtA(x)B(x)f∞(x) dx,

whereL andL∗ act on functions ofx. Thus we have established the formula

κA,B(t) =
(
StA(x), B(x)

)
f∞
, (2.25)

whereSt = eLt denotes the semigroup generated byL and
(
·, ·
)
f∞

denotes theL2

inner product weighted by the invariant distribution of thediffusion process.

Consider now the particular choiceB(x) = f−1
∞ Df∞. We combine (2.18)

and (2.25) to deduce

κ
A,f−1

∞ Df∞
(t) = RL0,A(t). (2.26)

This is a version of thefluctuation-dissipation theoremand it forms one of the
cornerstones of non-equilibrium statistical mechanics. In particular, it enables us
to calculate equilibrium correlation functions by measuring the response of the
system to a weak external forcing.

Example 2.6. Consider the Langevin equation from Example 2.3 in one dimension
with a constant external forcing:

q̈ = −∂qV (q) + εF − γq̇ +
√

2γβẆ .

We haveD = −∂p and

B = f−1
∞ Df∞ = βp.

We use(2.26)withA = p:

RL0,p(t) = β〈p(t)p(0)〉eq.



2.2. THE FLUCTUATION–DISSIPATION THEOREM 27

When the potential is harmonic,V (q) = 1
2ω

2
0q

2, we can compute explicitly the
response function and, consequently, the velocity autocorrelation function at equi-
librium:3

RL0,q(t) =
1

ω1
e−

γt
2 sin(ω1t), ω1 =

√
ω2

0 −
γ2

4

and

RL0,p(t) = e−
γt
2

(
cos(ω1t) −

γ

2ω1
sin(ω1t)

)
.

Consequently:

〈p(t)p(0)〉eq = β−1e−
γt
2

(
cos(ω1t) −

γ

2ω1
sin(ω1t)

)
.

Similar calculations can be done for more general linear SDEs. See Exercise 5.

Example 2.7. Consider again the Langevin dynamics with a perturbation inthe
temperature

dq = p dt, dp = −V ′(q) dt + F dt− γp dt+
√

2γβ−1(1 + F ) dWt.

We haveD = γβ−1∂2
p and

B = f−1
∞ Df∞ = γβ(p2 − β−1).

LetH(p, q) = p2/2 + V (q) denote the total energy. We have

f−1
∞ L∗

0H(p, q)f∞ = L0H(p, q) = γ(−p2 + β−1).

Consequently (see Exercise 6):

κA,f−1
∞ Df∞

(t) = −β d
dt
κA,H(t). (2.27)

Setting nowA = H we obtain

RH,L(t) = −β d
dt
〈H(t)H(0)〉eq .

3Notice that this is the Green’s function for the damped harmonic oscillator.
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2.3 Einstein’s Relation and the Green-Kubo Formula

Let us now calculate the long time limit ofA(t) when the external forcing is a step
function. The following formal calculations can be justified in particular cases, for
example for reversible diffusion process in which case the generator of the process
is a self-adjoint operator (in the right function space) andfunctional calculus can
be used.

We calculate:
∫ t

0
RL,A(t− s) ds =

∫ t

0

∫
A(x)eL0(t−s)Df∞ dx ds

=

∫ ∫ t

0

(
eL(t−s)A(x)

)
Df∞ ds dx

=

∫ (
eL0t

∫ t

0
eL(−s) dsA(x)

)
Df∞ dx

=

∫ (
eL0t(−L0)

−1
(
eL0(−t) − I

)
A(x)

)
Df∞ dx

=

∫ ((
I − eL0t

)
(−L)−1A(x)

)
Df∞ dx

Assuming now thatlimt→+∞ eLt = 0 (again, think of reversible diffusions) we
have that

Σ := lim
t→+∞

∫ t

0
RL,A(t− s) ds =

∫
(−L)−1A(x)Df∞ dx. (2.28)

Using this in (2.20) and relabelingεF 7→ F we obtain

lim
F→0

lim
t→+∞

A(t)

F
=

∫
(−L)−1A(x)Df∞ dx. (2.29)

Notice that we can interchange the order with which we take the limits in (2.29).
We will see later that formulas of the form (2.29) enable us tocalculatetransport
coefficients, such as the diffusion coefficient. We remark also that we canrewrite
the above formula in the form

lim
F→0

lim
t→+∞

A(t)

F
=

∫
φDf∞ dx,

whereφ is the solution of the Poisson equation

−Lφ = A(x), (2.30)
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equipped with appropriate boundary conditions. This is precisely the formalism
that was used in Chapter?? in the study of Brownian motion in periodic potentials:

Example 2.8. Consider the Langevin dynamics in a periodic or random potential.

dqt = pt dt, dpt = −∇V (qt) dt − γpt dt+
√

2γβ−1 dW.

From Einstein’s formula(??) we have that the diffusion coefficient is related to the
mobility according to

D = β−1 lim
F→0

lim
t→+∞

〈pt〉
F

where we have used〈pt〉eq = 0. We use now(2.28) with A(t) = pt, D =

−∇p, f∞ = 1
Z
e−βH(q,p) to obtain

D =

∫ ∫
φpf∞ dpdq = 〈−Lφ, φ〉f∞ , (2.31)

which is precisely the formula obtained from homogenization theory.

Notice also that, upon combining (2.26) with (2.29) we obtain

Σ = lim
t→+∞

∫ t

0
κA,f−1

∞ Df∞
(t− s) ds. (2.32)

Thus, a transport coefficient can be computed in terms of the time integral of an ap-
propriate autocorrelation function. This is an example of theGreen-Kubo formula
.

We can obtain a more general form of the Green-Kubo formalismas follows.
First, we define the generalized drift and diffusion coefficients as follows (compare
with (??) and (??)):

V f (x) = lim
h→0

1

h
E

(
f(Xh) − f(X0)

∣∣∣X0 = x
)

= Lf (2.33)

and

Df,g(x) := lim
h→0

1

h
E

(
(f(Xt+h) − f(Xt))((g(Xt+h) − g(Xt))

∣∣∣Xt = x
)

= L(fg)(x) − (gLf)(x) − (fLg)(x), (2.34)

wheref, g are smooth functions.4 The equality in (2.33) follows from the definition
of the generator of a diffusion process. For the equality in (2.34) see Exercise 3.
SometimesDf,g(x) is called theopérateur carŕe du champ.

We have the following result.
4In fact, all we need isf, g ∈ D(L) andfg ∈ D(L).
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Theorem 2.9. [The Green-Kubo formula] LetXt be a stationary diffusion process
with state spaceX, generatorL, invariant measureµ(dx) and letV f (x), Df,g(x)

given by(2.33)and (2.34), respectively. Then

1

2

∫
Df,fµ(dx) =

∫ ∞

0
E

(
V f (Xt)V

f (X0)
)
dt. (2.35)

Proof. We will use the notation(·, ·)µ for the inner product inL2(X, µ). First we
note that

1

2

∫
Df,fµ(dx) = (−Lf, f)µ := DL(f), (2.36)

whereDL(f) is the Dirichlet form associated with the generatorL. In view
of (2.36), formula (2.35) becomes

DL(f) =

∫ ∞

0
E

(
V f (Xt)V

f (X0)
)
dt. (2.37)

Now we use (2.25), together with the fact that
∫ ∞

0
eLt · dt = (−L)−1

to obtain ∫ ∞

0
κA,B(t) dt = ((−L)−1A,B)µ.

We set nowA = B = V f = Lf in the above formula to obtain (2.37) from
which (2.35) follows.

Remark 2.10. In the reversible case we can show that

1

2

∫
Df,gµ(dx) =

∫ ∞

0
E

(
V f (Xt)V

g(X0)
)
dt. (2.38)

In the reversible case (i.e.L being a selfadjoint operator inH := L2(X, µ)) the
formal calculations presented in the above proof can be justified rigorously using
functional calculus and spectral theory. See Exercise 7

Example 2.11. Consider the diffusion process(2.39)from Section??:

dXt = b(Xt) dt + σ(Xt) ◦ dWt, (2.39)

where the noise is interpreted in the Stratonovich sense. The generator is

L· = b(x) · ∇ +
1

2
∇ · (A(x)∇·) ,
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whereA(x) = (σσT )(x). We assume that the diffusion process has a unique in-
variant distribution which is the solution of the stationary Fokker-Planck equation

L∗ρ = 0. (2.40)

The stationary processXt (i.e. X0 ∼ ρ(x)dx) is reversible provided that condi-
tion (??) holds:

b(x) =
1

2
A(x)∇ log ρ(x). (2.41)

Letf = xi, g = xj. We calculate

V xi(x) = Lxi = bi +
1

2
∂kAik, i = 1, . . . d. (2.42)

We use the detailed balance condition(2.41)and (2.36)to calculate

1

2

∫
Dxi,xjµ(dx) = (−Lxi, xj)µ

= −
∫ (

bi(x) +
1

2
∂kAik(x)

)
xjρ(x) dx

= −1

2

∫
(Aik∂kρ(x) + ∂kAik(x)ρ(x)) xj dx

=
1

2

∫
Aij(x)ρ(x) dx.

The Green-Kubo formula(2.35)gives:

1

2

∫
Aij(x)ρ(x) dx =

∫ +∞

0
E

(
V xi(Xt)V

xj(X0)
)
dt, (2.43)

where the driftV xi(x) is given by(??).

2.4 Discussion and Bibliography

.

Linear response theory and the fluctuation-dissipation theorem form the cor-
nerstones of non-equilibrium statistical mechanics. These topics can be found in
any book on non-equilibrium statistical mechanics such as [28, 41, 3, 50, 34]. An
earlier reference is [6]. An early review article is [27].
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In Section 2.1 we considered stationary processes whose invariant density has
a smooth density with respect to Lebesgue measure. This excludes several in-
teresting problems such as chaotic dynamical systems or stochastic PDEs. Lin-
ear response theory for deterministic dynamical systems isreviewed in [45] and
for stochastic PDEs in [15]. Rigorous results on linear response theory and the
fluctuation-dissipation theorem for Markov processes are presented in [7]. There
is a very large literature on the mathematical justificationof linear response theory,
the fluctuations dissipation theory and the Green-Kubo formula. Our approach on
the Green-Kubo formula in Section 2.3 and, in particular, Theorem 2.9 is based
on [23, 48]. See also [22].

Formulas of the form (2.31) for the diffusion coefficient canbe justified rigor-
ously using tools either from stochastic analysis (the martingale central limit the-
orem) or the theory of partial differential equations (homogenization theory). The
diffusion coefficient for reversible diffusions (togetherwith the functional central
limit theorem) is proved in [24]. Einstein’s formula for thediffusion coefficient of
a Brownian particle in a periodic potential is justified rigorously in [44].

Linear response theory and the fluctuation-dissipation theorem have a found a
wide range of applications. Examples include climate modeling [31] and galactic
dynamics [4, Ch. 5].

Linear response theory, the fluctuation–dissipation theorem and Green–Kubo
formulas are important topics in quantum non-equilibrium statistical mechanics.
See, for example [17, 18] and the references therein. See also [34].

2.5 Exercises

1. LetXt be the solution of (2.8) and assume that we add a weak externalforcing to
both the drift and the noise. Write down the equation for the perturbed dynamics
and the formulas forL1 andD.

2. Calculate higher order terms in the expansion (2.14). Usethis in order to calcu-
late higher order terms in the calculation of expectation values of observables.

3. LetXt be a stationary Markov process with state spaceX, generatorL and
invariant measureµ and letf, g ∈ D(L) andfg ∈ D(L). Show that

lim
h→0

1

h
E

(
(f(Xt)−f(X0)(g(Xt)−g(X0)

∣∣∣X0 = x
)

= L0(fg)(x)−(gLf)(x)−(fLg)(x)
(2.44)
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in L1(X, µ).

4. Let Xt ∈ Rd be a dynamical system at equilibrium att = −∞, which is
perturbed away from equilibrium by a weak external forceF (t). LetA(x) be a
scalar phase space function and consider the linear response relation

∆A(t) =

∫

R

γ(s)F (t− s) ds, (2.45)

where∆A(t) = 〈A(Xt)〉 − 〈A(Xt)〉eq. Thecausality principleimplies that

γ(t) = 0, for t < 0. (2.46)

Assume thatγ(t) ∈ L1(R).

(a) Show that the linear response relation (2.45) can be written in the form

∆̂A(ω) = γ̂(ω)F̂ (ω), (2.47)

wheref̂(ω) denotes the Fourier transform of a functionf(t) (we assume
that all Fourier transforms in (2.47) exist). The Fourier transform of the
response function̂γ(ω) is called thesusceptibility.

(b) Show that the causality principle (2.46) implies thatγ̂(ω), ω ∈ C is an
analytic function in the upper half of the complex half plane.

(c) Assume furthermore thatlim|ω|→+∞
1
|ω|γ(ω) = 0. Apply Cauchy’s inte-

gral theorem to the function

f(ω) =
γ̂(ω)

ω − ζ
,

whereζ ∈ R and use the residue theorem to prove theKramers-Kronig
relations

γR(ζ) =
1

π
P
∫

R

γI(ω)

ω − ζ
dω, (2.48a)

γI(ζ) = − 1

π
P
∫

R

γR(ω)

ω − ζ
dω, (2.48b)

whereγ̂(ω) = γR(ω)+ iγI(ω) andP denotes the Cauchy principal value.
(Hint:integrate the functionf(ω) alongR and a semicircle in the upper
half plane, avoiding the pointζ ∈ R with a small semicircle of radiusr in
the upper half plane ).
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(d) Use the fact thatγ(t) is a real valued function to obtain the alternative
formulas

γR(ζ) =
2

π
P
∫ ∞

0

ωγI(ω)

ω2 − ζ2
dω, (2.49a)

γI(ζ) = − 1

π
P
∫

R

ζγR(ω)

ω2 − ζ2
dω. (2.49b)

More information about the Kramers-Kronig relations can befound in [6, Sec.
VIII.3], [41, Sec. XI.1.2].

5. LetA andΣ strictly positive and positive, respectivelyd× d matrices and con-
sider the linear SDE

dXt = −AXt dt+
√

2Σ dWt (2.50)

(a) Consider a weak external forcing. Calculate the response function. Use
this to calculate the equilibrium autocorrelation matrix

〈x(t) ⊗ x(0)〉eq.

(b) Calculate the susceptibilities corresponding to the response functionsRL0,xi
(t)

(see Exercise 4).

(c) Consider weak fluctuations in the diffusion matrixΣ. Calculate the re-
sponse function and the equilibrium autocorrelation function of the (ap-
propriately defined) energy.

6. Use (2.25) to prove (2.27).

7. LetL be the generator of a reversible diffusion process. Use the spectral theo-
rem for self-adjoint operators to provide a rigorous proof of (2.38).
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