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Chapter 1

Derivation of the Langevin
Equation

In this chapter we derive the Langevin equation from a simpéehanical model
for a small system (that we will refer to as the Brownian pdai that is in con-
tact with a thermal reservoir which is at thermodynamic Houim at timet =
0. The full Brownian particle plus thermal reservoir dynasis assumed to be
Hamiltonian. The derivation proceeds in three steps. ,Fivst derive a closed
stochastic integrodifferential equation for the dynami€she Brownian particle,
the Generalized Langevin Equation (GLE) . In the second step, ppgaximate
the GLE by a finite dimensional Markovian equation in an esteghphase space.
Finally, we use singular perturbation theory for Markov gagsses to derive the
Langevin equation, under the assumption of rapidly detating noise. This
derivation provides a partial justification for the use afctastic differential equa-
tions, in particular, the Langevin equation, in the modgliri physical systems.

In Section 1.1 we study a simple model for open classicalesystand we
derive the Generalized Langevin Equation. The Markovigor@amation of the
GLE is studied in Section 1.2. The derivation of the Langeduiation from this
Markovian approximation is studied in Section 1.3. Disaussind bibliographical
remarks are included in Section 1.4. Exercises can be fouSéction 1.5.

1.1 Open Classical Systems

We consider a particle in one dimension that is in contadh wthermal reservoir
(heat bath), a system with infinite heat capacity at tempegat—! that interacts
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2 CHAPTER 1. DERIVATION OF THE LANGEVIN EQUATION

(exchanges energy) with the particle. We will model the masie as a system of
infinitely many non-interacting particles which is in thexdynamic equilibrium
at timet¢ = 0. In other words, we will model the heat bath as a system of in-
finitely many harmonic oscillators whose initial energy istdbuted according to
the canonical (Boltzmann-Gibbs) distribution at tempaeat—'.

A finite collection of harmonic oscillators is a Hamiltoniapstem with Hamil-
tonian

1eh , 1en,
H(p,q):5§ pj+§§ qj, (1.1)
i=1 =1

where for simplicity we have set all the spring consta{rl:tjs}j-vz1 equal tol. The
corresponding canonical distribution is

1 _
pa(dp, dq) = — e D dpdg. (1.2)

Since the Hamiltonian (1.1) is quadratic in both positiond momenta, the mea-
sure (1.2) is Gaussian. We set= (q, p) € R?Y =: H and denote by-, -)
the Euclidean inner product in (the Hilbert spaég) Then, for arbitrary vectors
h, b € H we have

E(z, h) = 0, E<<z,h><z,b>> = 6 (h,b). (1.3)

We want to consider an infinite dimensional extension of th@va model for the
heat bath. A natural infinite dimensional extension of adisigstem of harmonic
oscillators is the wave equatidif = 92¢ that we write as a system of equations

ath =T, 81571' = 8%@ (14)
The wave equation is an infinite dimensional Hamiltoniariesyswith Hamiltonian
1
Himp) =5 [ (Il + 1ol do (L5)
R
It is convenient to introduce the Hilbert spafg; with the (energy) norm
12 = [ (1nf +1020) da (L6)
R

where¢ = (¢, 7). The corresponding inner product is

(p1,¢2) = /R (Opp1(2)Dpipa () + w1 (2)72(2)) da (1.7)



1.1. OPEN CLASSICAL SYSTEMS 3

where the overbar denotes the complex conjugate. Usingata¢ion (1.6) we can
write the Hamiltonian for the wave equation as

1

H() = 5o,

We would like to extend the Gibbs distribution (1.2) to thidinite dimensional
system. However, the expression

1
pp(drdyp) = Ee—ﬂHWﬂnxeR drdyp (1.8)

is merely formal, since Lebesgue measure does not exisfimtendimensions.
However, this measure is Gaussian (the Hamiltoriais a quadratic functional in

m and¢) and the theory of Gaussian measures in Hilbert spaces islexadloped.
This theory goes beyond the scope of this doe&r our purposes it is sufficient to
note that if X is a Gaussian random variable in the Hilbert spae with inner
product (1.7) then X, f) is a scalar Gaussian random variable with mean and
variance

(X,f)=0, and E(<X, FIX, h>) = B7Yf, h). (1.9)

Notice the similarity between the formulas in (1.3) and 1.9
We assume that the full dynamics of the particle coupled ¢ohtbat bath is
Hamiltonian described by a Hamiltonian function

H(p,q, 7, ¢) = H(p,q) +Hup(r, ) + Hi(q,»). (1.10)

We useH ;g (7, ¢) to denote the Hamiltonian for the wave equation (15)p, q)
denotes the Hamiltonian of the particle, wherégsdescribes the interaction be-
tween the particle and the fietl We assume that the coupling is only through the
positiong andg, it does not depend on the momentprand the momentum field.

We assume that the particle is moving in a confining potehtial). Consequently:

2

H(p.q) = 5 + V(). (L12)

Concerning the coupling, we assume that it is linear in thie fieand that it is
translation invariant:

Hi(q,¢) = /Rw(u’v)p(w —q)dz. (1.12)

!Some discussion about Gaussian measures in Hilbert spacésdound in Sectiof?.
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The coupling between the particle and the heat bath depeundslty on the func-
tion p(x) which is arbitrary at this poirt.

Now we make an approximation that will simplify considesalite analysis:
since the particle moves in a confining potential (think ofuadyatic potential),
we can assume that its position does not change too much eQuestly, we can
perform a Taylor series expansion in (1.12) which, togethi#r an integration by
parts gives (see Exercise’1)

Hi(q,¢) =~ q/R@st(x)p(w) dx. (1.13)

The coupling now is linear in both andp. This will enable us to integrate out
explicitly the fieldsy and 7 from the equations of motion and to obtain a closed
equation for the dynamics of the particle.
Putting (1.11), (1.5) and (1.13) together, the Hamiltor{tai0) becomes
P2 1 2 2
DVt [ (nP+10:0P) do+ g [ drplapto) .
R R
(1.14)
Now we can derive Hamilton’s equations of motion for the dedpparticle-field
model (1.14):

H(pa q,T, ¢) =

OH OH
= L = 1.1
q o P 90’ (1.152)
Btgo = 5—H, 8t7r = —5—H, (115b)
o dp

Where stands for the functional derivatie Carrying out the differentiations
we obtam

g = p, p=-V(q /&Cap (1.16a)
Op = m, 8tﬂ:8xap+q6xp. (1.16b)

Our goal now is to solve equations (1.16b), which is a systétimear inhomo-
geneous differential equations and then substitute intb6é). We will use the

2In the terminology of electrodynamicg plays the role of @harge density.
3Again, in the terminology of electrodynamics this is calteddipole approximation

*We remind the reader that forafunctional of the foktgp) = fR (¢, 0z) dzx the functional

derivative is given byL -2 We apply this definition to the functional (1.14) to

¢ oz a(a P’
obtain§ =, = —02p — qdup.
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variation of constants formuleDUhamel’s principl¢. It is more convenient to
rewrite (1.16) in a slightly different form. First, we inttace the operator

AZ(aOQ é) (1.17)

acting on functions irf{ ; with inner product (1.7). It is not hard to show that the
A is an antisymmetric operator in this space (see Exercisd-@jthermore, we
introduce the notation. = (a1 (z), 0) € Hg with 9,1 (z) = p(x). Noticing that

Aa = (0, 0zp),
we can rewrite (1.16b) in the form

0 = A + qa) (1.18)
with ¢ = (¢, 7). Furthermore, the second equation in (1.16) becomes

p=-V'(q)— ($,q). (1.19)

Finally, we introduce the functiot = ¢ + g to rewrite

oy = A + pa. (1.20)
Similarly, we introducey in (1.19) to obtain

p=—Visq) — ¥, a), (1.21)

where ]
Vers(q) =V(g) — §Hall2q2. (1.22)

Notice that
lell® = [lpll72 =: A

The parameteA measures the strength of the coupling between the particle a
the heat bath. The correction term in the poteritigls (¢) is essentially due to the
way we have chosen to write the equations of motion for thégbexfield system
and it is not fundamental; see Exercise 1.

The solution of (1.20) is

Y(t) = e ap(0) +/ A=) p(s)ads.

0



6 CHAPTER 1. DERIVATION OF THE LANGEVIN EQUATION

We substitute this in (1.21) to obtain
p = —Vi(a) = (¥, )
t
= V() = (eM(0), ) —/ <6A(t73)oz,a> p(s)ds

0
= V(o) - /0 2(t — $)p(s) ds + F(2)

where

F(t) = (9(0),e *a) (1.23)
and

Y(t) = (e Ma,a) (1.24)
Notice thaty(0) = ¢(0) + ¢(0)« is a Gaussian field with mean and covariance,
using (1.9),
E<1/1(0)7 f> = Q(O)<a7 f> =t uf

and

E (((0), f) = 1s) ((0), h) — ) = B[, h).

To simplify things we will setg(0) = 0. Then F'(¢) is a mean zero stationary
Gaussian process with autocorrelation function

E(F(t)F(s)) = E({(4(0),ea) (1(0),e *a))
= g1 <€7'AtOé,€7ASOé>

= ﬁilv(t - 8)7

where we have used (1.9). Consequently, the autocornelffatiection of the stochas-
tic forcing in (1.23) is precisely the kernel (times the targiure) of the dissipation
term in the equation fop. This is an example of thifuctuation-dissipation theo-
rem.

To summarize, we have obtained a closed equation for thentigeeaof the
particle, theGeneralized Langevin Equation

i = ~Viyyl@) = [ 2t = s)it)ds+ F0), (1.25)

with F'(¢) being a mean zero stationary Gaussian processes with aiation
function given by the fluctuation—dissipation theorem

E(F()F(s)) = 57t — s). (1.26)
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It is clear from formula (1.24) and the definition @fthat the autocorrelation func-
tion v(¢) depends only on the density In fact, we can show that (see Exercise 3)
that

10 = [ 1ot (1.27)

wherep(k) denotes the Fourier transform @f

Let us now make several remarks on the Generelized Langeniation (1.25)
(GLE). First, notice that the GLE is Newton’s equation of mntfor the particle,
augmented with two additional terms: a linear dissipatemmtwhich depends on
the history of the particle position and a stochastic faydierm which is related
to the the dissipation term through the fluctuation—dig&patheorem (1.26). The
fact that the fluctuations (noise) and the dissipation insysems satisfy such a
relation is not surprising, since they have the same sounaragly the interaction
between the particle and the field. Is is important to notettienoise (and also the
fact that it is Gaussian and stationary) in the GLE is due taasgumption that the
heat bath is at equilibirum at time= 0, i.e. that the initial equations of the wave
equation are distributed according to the (Gaussian) Giidmsure (1.8). Perhaps
surprisingly, the derivation of the GLE and the fluctuatiossgpation theorem are
not related to our assumption that the heat bath is deschied field, i.e. it
is a dynamical system with infinitely many degrees of freeddife could have
arrived at the GLE and the fluctuation—dissipation theorgamdf we had only
one oscillator in the “heat bath”. See Exercise 6.

Furthermore, the autocorrelation function of the noiseedeg only on the
coupling functionp(z): different choices of the coupling function lead to diffiere
noise processek(t). &

Itis also important to emphasize the fact that the GLE (li2&juivalentio the
original Hamiltonian dynamics (1.14) with random initiabrditions distributed
according to (1.8). So far, no approximation has been ma@echa¥e merely used
the linearity of the dynamics of the heat bath and the litgari the coupling in
order to integrate out the heat bath variables by using thiatian of constants
formula.

Finally we remark that an alternative way for writing the GisE

i=—V(q) - /0 Dt — s)q(s) ds + F(t) (1.28)

SAssuming, of course, that the heat bath is described by a egation, i.e. assuming thaltis
the wave operator.
81n fact, the autocorrelation function depends also on theraiprA in (1.17).
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with
D(t) = (Ae™a, a). (1.29)

The fluctuation-dissipation theorem takes the form
A(t) = D(t). (2.30)

See Exercise 7. When writing the GLE in the form (1.28) ther&d need to
introduce an effective potential or to assume &) = 0.

1.2 The Markovian Approximation

From now on we will ignore the correction in the potential@). We rewrite the
GLE (1.25):

i=-V'(g) - /0 At — 8)i(s) ds + F(2), (1.31)

together with the fluctuation-dissipation theorem (1.Z&uation (1.31) is a non-
Markovian stochastic equation, since the solution at tirdepends on the entire
past. In this section we show that when autocorrelationtfaney(¢) decays suf-
ficiently fast, then the dynamics of the particle can be deedrby a Markovian
system of stochastic differential equations in an extergtease space. The basic
observation that was already made in Chapt@rExercise?? that a one dimen-
sional mean zero Gaussian stationary with continuous gaibsan exponential
autocorrelation function is necessarily the Ornsteinddbeck process. This is
the content of Doob’s theorem . Consequently, if the mememél (autocorre-
lation function)~(¢) is decaying exponentially fast, then we expect that we can
describe the noise in the GLE by adding a finite humber of &uyilvariables.
We can formalize this by introducing the concept afumsi-Markovian process
quasi-Markovian process:

Definition 1.1. We will say that a stochastic proced§ is quasi-Markovian if it

can be represented as a Markovian stochastic process bygddiinite number of
additional variables: there exists a finite dimensionalkcstastic proces¥; so that

{X:, Y;} is a Markov process.

In the following result we will use the notatiofy, -) to denote the Euclidean
inner product.
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Proposition 1.2. Let A € R? A e R4 positive definite, and assume that the
autocorrelation functiony(t) is given by

y(t) = (74N N). (1.32)

Then the GLE1.31)is equivalent to the SDE

q(t) = p(), (1.33a)
p(t) = =V'(a(t) + (X 2(1)), (1.33b)
t) = —ptA—Az(t)+SW(t), 2(0)~N(0,371I), (1.33¢)

wherez : RT — R™, A € R™, ¥ € R™*™ and the matrix2 satisfies
el = 5714+ AT). (1.34)

Remark 1.3. Notice that the formula for the autocorrelation functi¢h.32) is
similar to (1.24) However, the operatod in (1.24)is the wave operatof1.17),
i.e. the generator of a unitary group, whereas the operatdpr, rather, — A) that
appears in(1.32)is the generator of the contraction semigroup??, i.e. a dissipa-
tive operator. The source of the noisg(in25)and in(1.33)is quite different, even
though the have the same effect, when the autocorrelatiotifun is exponentially
decaying.

Proof. The solution of (1.33c) is

t t
2(t) = e 2(0) + / e~ A=IRqw (s) — / e A=) \p(s)ds.  (1.35)
0 0

We substitute this into (1.33b) to obtain

b= —Vig)— /0 2t — s)p(s) ds + F(t)

with
Y(£) = (AN

and
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where .
y(t) = S(t)z(0) —|—/0 S(t — s)LdW (s)

with S(t) = e~“*. With our assumptions o (0) and (1.34)y(t) is a mean zero
stationary Gaussian process with covariance matrix

Q(t —5) =E(y" ()y(s)) = 7'S(|t — s)). (1.36)

To see this we first note that (using the summation convention
t s
E(yi(t)y;j(s)) = Sie(t)S;p(t)E(20(0)2,(0)) + / / Sip(t = O)X ok Sin(s — T)Xpk0 (L — 7) dldn
0 Jo

min(t,s)
= S8+ [ Silt = D uSuSin(s — 1) dr
0

Consequently, and using (1.34),

min(¢,s)
BT (0ue) = 5SS 6+ [ S - nsTEsts - s

— gisw) (1 v MY A+ AT)ST (=) dr> ST (s).

Without loss of generality we may assume that ¢. Now we claim that

( . /0 min(te) S(=7)(A+ AT)ST (=7) dT) §%(s) = S(=9).

To see this, notice that this equation is equivalent to

Tt [ S(er)(A + ATYST(—r) dr = S(s)ST ().
0

This equation is clearly valid at= 0. We differentiate to obtain the identity

d
)= @
which is true for alls. This completes the proof of (1.36). Now we calculate, with
s < t,

S(—s)(A+ AT)ST (—s S(s)ST (—s),

E(F@#)F(s)) = E(XNy)Ay(s)
(Q(t — )M N) = B He 4N \)
1

= Bt —s)

and the proposition is proved. O O
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Example 1.4. Consider the case:» = 1. In this case the vectox and the matrix
A become scalar quantities. The SPE33)becomes

qt) = p(),
p(t) = —=V'(g(t)) + Az(t),
t) = —Ap(t) —az(t) + /2a6-1W(t), 2(0) ~N(0,67h).

The autocorrelation function is
v(t) = Nem .
Example 1.5. Consider now the case
0 1
A= .
( L= )

The Markovian GLE takes the form

= D (1.37a)
p = —Vig+\az), (1.37b)
2= (224 Aip), (1.37¢c)
Zo = (=21 —7v22— Xop) + V28 lap W. (1.37d)

The generator of the dynamics (1.33) is
1
L=pdy—0,VO,+(\2)0, —p\-V, — Az -V, + iﬁflA :D,, (1.38)

whereA : D, denotes the Frobenius inner product betwdeand the Hessian with
respectto:, A: D, = Zgjzl Aij%;zj.7 The Fokker-Planck operator is
1
LY = —pdy + 04V, — (X, 2)0p +p\ -V, +V, (Az-) + 567114 :D,. (1.39)

When the potential/(¢) is confining then the process(t) := (q(t), p(t), z(t))
has nice ergodic properties. We recall that the Hamiltoofahe system i$7 (p, ¢) =
1,2

70+ V(q).

"In fact, the last term in (1.38) should re@d ' A, : D., whereA, = (A + A") denotes the
symmetric part ofA. However sinceD . is symmetric we can write it in the forrﬁﬁ’lA :D,.
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Proposition 1.6. Assume that the potentidl in (1.33) is confining. Then the
processX (t) := (q(t), p(t), z(t)) is ergodic with invariant distribution
1
ps(q,p,z) = EG—B(H(MH%HZIIQ), 7 — (zﬂgfl)d“ /ReﬁV(q) dg. (1.40)
Proof. We only prove that (1.40) is an invariant distribution. Tha@queness is
discussed in Section 1.4. We have to check thais a solution of the stationary
Fokker-Planck equation

L*pz = 0.
We have
(= pdy + 0,V 8,)e PH@r) =
Furthermore
(—=(\,2)0p +pX- V2) B +3lz1%) — ¢
Finally
V.- (Az - %ﬁ‘%%) e 2Pl =,
The formula for the partition function follows from Gaussiategration. O

Remark 1.7. Notice that the invariant distribution is independent of thector
and the matrixA.

As in the case of the Langevin dynamics, we can work in the keity?
spaceL?(R%4; pg). In this space the generator (1.38) can be naturally decom-
posed into its symmetric and antisymmetric parts simil&slyhe generator of the
Langevin dynamics that was studied in Cha@@r We denote by4d, and A, the
antisymmetric and symmetric parts of the matdixrespectively.

Proposition 1.8. The genrator(1.38)can be written as
L=A+S, (1.412)

where
A=p0y — 04V, + (N 2)0, — (Agz, V)

and
S=(-AzV.)+ 387 1A,: D..

Furthermore, A and S are antisymmetric and symmetric operators, respectively,
with respect to the.?(R2+%; ps) inner product.

The proof of this proposition is left as an exercise.
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1.3 Derivation of the Langevin Equation

Now we are ready to derive the Langevin equation

i=p, p=-V'(9)—p+ V278" W, (1.42)

and to obtain a formula for the friction coefficient We can derive the dynam-
ics (1.42) from the GLE (1.31) in the limit where the corradattime of the noise
becomes very smally(t) — §(t). This corresponds to taking the coupling in the
full Hamiltonian dynamics (1.14) to be localized,x) — §(z).

We focus on the Markovian approximation (1.33) with the fignoif autocor-
relation functions ) "

() = e AN,

This corresponds to rescalingand A in (1.33) according to\ — /e and A —
A/e%. Equations (1.33) become

@t) = (), (1.43a)
FO) = V@) + 0 0), (1.430)
E() = —épe(t))\—g—zAzE(t)—kéEW(t), 25(0) ~ N0, 5~ [L.43c)

where (1.34) has been used.

Proposition 1.9. Let {¢°(¢), p°(t), 2(t)} denote the solution of1.43)and as-
sume that the matrix is invertible. Then{¢*(t), p*(t)} converges weakly to the
solution of the Langevin equatidi.42) where the friction coefficient is given by
the formula

y(t) = (A, A7), (1.44)

Remark 1.10. Notice that(1.44)is equivalent to

+o0o
72/0 y(t) dt

as well as
T=(A¢), A=A
These formulas are similar to the ones that we obtained inp&heP? for the

diffusion coefficient of a Brownian particle in a periodictpnotial as well as the
ones that we will obtain in Chapter 2 in the context of the @r&e&ibo formalism.
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Proof. The backward Kolmogorov equation corresponding to (1.43) i

ouf

1 1
o E—Qﬁo + 251 + Lo (1.45)

with

Ly = —(4z,V,)+ B71A: D,,
El == <)‘72>8p _p<)‘7 VZ>
Ly = pdy—8,V0,

We look for a solution to (1.45) in the form of a power seriepamsion ire:
u® =g +eup +2ug + . ...

We substitute this into (1.45) and equate powers td obtain the sequence of
equations

Loug = 0, (1.46&)
—[,oul = [,1UQ, (1.46b)
—Lous = Liug + Loug — % (1.460)

From the first equation we deduce that to leading order thetieal of the Kol-
mogorov equation is independent of the auxiliary varialles, = u(q,p,t). The
solvability of the second equation reads

_ B 712
Liuge 271 gz = 0,

Rd
which is satisfied, since
ou
Liug = (N, z)——.
1o = (A, z) T
The solution to the equation
ou
—£0u1 = <)\7Z>E

ou

ui(q,p,t) = <(AT)_1)\7Z>E7
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plus an element in the null spaceff, which, as we know from similar calculation
that we have already done, for example in Secfi@will not affect the limiting
eqguation.

Now we use the solvability condition for (1.46c) to obtair thackward Kol-
mogorov equation corresponding to the Langevin equatitwe. sSbivability condi-
tion gives

ou
i Lou+ (Liu1)g,
where
(= (2n07) " [ e Hlel g,
R4
We calculate
0%u ou
— g liaT)1! T2 ATy -
(Lrur)p =B (A7) AN 052 (A7), >\>p8p
Consequentlyy is the solution of the PDE
u —192
i (paq — 0,VO, —vp0y + 8 ap)u,
where~ is given by (1.44). This is precisely the backward Kolmogoeguation
of the Langevin equation (1.42). O

1.4 Discussion and Bibliography

Section 1.1 is based on [42]. The Generalized Langevin eguatas studied
extensively in [19, 20, 21] where existence and uniquengésslations as well as
ergodic properties were established. An early referendb@®nonstruction of heat
baths is [32]. The ergodic properties of a chain of anharmoscillators, coupled
to two Markovian heat baths (i.e. with an exponential autiedation function) at
different temperatures were studied in [10, 11, 9, 43]. TtaKdvian approxima-
tion of the Generalized Langevin equation was studied i [28e also [37].

A natural question that arises is whether it is possible fr@pmate the GLE
equation (1.25) with an arbitrary memory kernel by a Markoveystem of the
form (1.33). This essentially a problem in approximatioadty that was studied
in [46, 26, 25]. A systematic methodology for obtaining Mawlan approxima-
tions to the GLE, which is based on the continued fractioraesjon of the Laplace
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transform of the autocorrelation function of the noise ie @GLE, was introduced
by Mori in [36].

Another model for an open classical system that has beeredtedtensively
is based on a finite dimensional heat bath. A calculationlainid the one that
we have done in Section 1.1 leads to a GLE in which the noiserdipon the
number of particles in the heat bath. One then passes to ¢hmddynamic limit
i.e. the limit where the number of particles in the heat baghdmes infinite to
obtain the GLE; see Exercise 6. This model is called Klae—Zwanzig model
and was introduced in [13, 49]. See also [12]. Further inftiom on the Kac-
Zwanzig model can be found in [33, 5, 14, 2]. Nonlinear cauplbetween the
distinguished particle and the harmonic heat bath is stugig30]. The Kac-
Zwanzig model can be used in order to compare between thiésre§teaction rate
theory that was developed in Chap®?with techniques for calculating reaction
rates that are appropriate for Hamiltonian systems sudtaasition state theory
See [16, 39, 1, 38].

We emphasize the fact that the GLE obtained in secti®$hand ?? from the
coupled particle-field model (1.10) exact Of course, all the information about
the environment is contained in the noise process and the@uelation function.
The rather straightforward derivation of the GLE is basedtanlinearity of the
thermal reservoir and on the linear coupling. Similar detians are also possible
for more general Hamiltonian systems of the for#®)(using projection operator
techniques. This approach is usually referred to asvtbe-Zwanzig formalism
This approach is developed in many books on non-equilibstetistical mechan-
ics [35, 28, 50]. It is possible to derive Langevin (or Fokkiéanck) equations in
some appropriate asymptotic limit, for example, in the fias the ratio between
the mass of the particles in the bath and the (much heaviewyfan particle tends
to 0. See [35, 47]. This asymptotic limit goes back to Einstegniginal work on
Brownian motion. A rigorous study of such a model is presgirtg8].

1.5 Exercises

1. Derive (1.13) from (1.12). Show that the next term in thpamsion compen-
sates for the correction term in the effective potentia2Z}..

2. Show that the operatot defined in (1.17) is antisymmetric in the Hilbert space
Hyp, with inner product (1.7). Conclude thét*)x = e~A*. Prove that the
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one parameter family of operator&** forms aunitary group (This is usually
referred to astone’s theorem . See [40].

3. Solve the wave equation (1.4) by taking the Fourier tiamsf In particular,
calculatee = in Fourier space. Use this to prove (1.27).

4. Solve the GLE (1.31) for the free particlé = 0 and when the potential is
guadratic (hint: use the Laplace transform, see [29]).

5. (a) Consider a system 8f harmonic oscillators governed by the Hamiltonian

S I T

H(%P)—Z%JFE] :
J=1

¢, p € RY. Assume that the initial conditions are distributed acowd
to the distributionte~##(P.a0) with 3 > 0. Compute the average kinetic
energy for this system as a function of time.

(b) Do the same calculation for the Hamiltonian

H(q, p) = 5(4p.p) + 5(Ba.q)

whereq, p € RN, A, B € RV*N are symmetric strictly positive definite
matrices and the initial conditions are distributed actwdo £ e~ (P-a),

6. (The Kac-Zwanzig model) . Consider the Hamiltonian

H(QN, Pn,q,p) = V(Qn) + Z [( nq;‘i> - )‘MnQnQN:|(J--47)

where the subscripV in the notation for the position and momentum of the
distinguished particley y and Py emphasizes their dependence on the number
N of the harmonic oscillators in the heat bath(()) denotes the potential ex-
perienced by the Brownian particle akd> 0 is the coupling constant. Assume
that the initial conditions of the Brownian particle areatatinistic and that the
those of the particles in the heat bath are Gaussian disdkaccording to the
distribution e~ #H(P.a),

(a) Obtainthe Generalized Langevin equation and proveubtuttion—dissipation
theorem.
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(b) Assume that the frequenciés, }/_, are random variables. Investigate
under what assumptions on their distribution it is possibl@ass to the
thermodynamic limit (see [14]).

7. Derive equations (1.28), (1.29) and (1.30).
8. Prove Proposition 1.8.

9. Analyze the modelds studied in this paper in the multidisi@nal case, i.e.
when the Brownian particle is@&-dimensional Hamiltonian system.



Chapter 2

Linear Response Theory for
Diffusion Processes

In this chapter we study the effect of a weak external forting system at equilib-
rium. The forcing moves the system away from equilibrium amdare interested
in understanding the response of the system to this foréWegstudy this problem
for ergodic diffusion processes using perturbation thelwrparticular, we develop
linear response theoryThe analysis of weakly perturbed systems leads to funda-
mental results such as tfleictuation-dissipation theoremind to the Green-Kubo
formula that enables us to calculate transport coefficients

Linear response theory is developed in Section 2.1. Theaufticin-dissipation
theorem is presented in Section 2.2. Einstein’s relatidve Green-Kubo formula
and the fluctuation-dissipation theorem are studied ini@e&t 3. Discussion and
bibliographical remarks are included in Section 2.4. Es&s can be found in
Section 2.5.

2.1 Linear Response Theory

The (somewhat abstract) setting that we will consider infdtlewing. Let X,
denote a stationary dynamical system with state spaemd invariant measure
u(dz) = foo(x)dx. We probe the system by adding a time dependent forcing
eF(t) with ¢ < 1 at timeto.t. Our goal is to calculate the distribution function
fe(z,t) of the perturbed systemk;, ¢ < 1, in particular in the long time limit

The natural choice i& = 0 Sometimes it is convenient to takg = —oo.

19
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t — +oo. We can then calculate the expectation value of observaslagell as
correlation functions.

We assume that the distribution functigf(z, ¢t) satisfies a linear kinetic equa-
tion e.g. the Liouville or the Fokker-Planck equatfon:

8f€ _ *x€E re
o = L (2.1a)
folisyy = foor (2.1b)

The choice of the initial conditions reflects the fact that at ¢, the system is at
equilibrium.
The operatoiL*¢ can be written in the form

L= L8 +eLl] 2.2)

whereL;; denotes the Liouville or Fokker-Planck operator of the utyybed sys-
tem and.j is related to the external forcing. Throughout this sectie will
assume thaf; is of the form

Li=F(t)-D, (2.3)

whereD is some linear (differential) operator. Singg is the unigue equilibrium
distribution, we have that
L} fso = 0. (2.4)

Before we process with the analysis of (2.1) we present a fameles.

Example 2.1. (A deterministic dynamical system)Let X; be the solution of the

differential equation
dXy
— = h(X, 2.5
dt ( t)a ( )

on a (possibly compact) state spaXe We add a weak time dependent forcing to

obtain the dynamics
dX;

— = h(X;) +eF(t). (2.6)

2Note that, in order to be consistent with the notation thahesee used previously in these notes,
in (2.1a) we useC™ instead ofL, since the operator that appears in the Liouville or the EolManck
equation is the adjoint of the generator.
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We assume that the unperturbed dynamics has a unique inatistribution f,
which is the solution of the stationary Liouville equation

V- (h@)f) =0, 2.7)
equipped with appropriate boundary conditions. The opardl* € in (2.2) has the
form

L = -V (h(m) ) _F(t) V-
In this example, the operatdp in (2.3)is D = —V.

A particular case of a deterministic dynamical system ofdinen (2.5), and the
most important in statistical mechanics, is that ofébody Hamiltonian system.

Example 2.2. (A stochastic dynamical system)Let X; be the solution of the
stochastic differential equation

dXt == h(Xt) dt + O'(Xt) th, (28)

onR<, wheres () is a positive semidefinite matrix and where tlgeittterpretation
is used. We add a weak time dependent forcing to obtain thentigs

dX; = h(Xy) dt + eF(t) dt + o(X;) dW;. (2.9)

We assume that the unperturbed dynamics has a unique invaistribution f,
which is the solution of the stationary Fokker-Planck edprat

1 2, —
V. (h(:c)foo) +5D%: (E(w)foo) —0, (2.10)
whereX(z) = o(z)o” (x). The operator* < in (2.2) has the form
1
*8. e — . . —_ 2 . . f— . -
s v <h(w) ) +5D%: (z(x) ) eF(t) - V:
As in the previous example, the operafornin (2.3)is D = —V.
Example 2.3. A particular case of Example 2.2 is the Langevin equation:
G=—-VV(q)+eF(t)— v+ /296 W. (2.11)
Writing (2.13)as a system of SDEs we have
dgy = prdt, dpy = —VV(q)dt +cF(t)dt — ypy dt + /276 dW,.  (2.12)

For this example we hav® = —V, and, assuming that’ is a confining potential,
foo = £ PHPD H(p,q) = 1p* + V(q). We will study this example in detail
later on.
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Example 2.4. Consider again the Langevin dynamics with a time-depenigamt
perature. The perturbed dynamics is

dgy = pedt, dp, = —VV(q)dt —yprdt + /2y~ 1(1 +T'(t)) dW;, (2.13)
with 1 + £T'(t) > 0. In this case the operatab is
D= WﬁflAp.

The general case where both the drift and the diffusion antefped is consid-
ered in Exercise 1.

Now we proceed with the analysis of (2.1). We look for a solutin the form
of a power series expansion&n

f8:f0+€f1+---- (214)

We substitute this into (2.1a) and use the initial conditidrib) to obtain the equa-
tions

fo

8t = £8f07 f0|t:0 = fOO? (215a)
O _ frptr =0 2.15b
o = Lofit+Lifo, fil,_o =0. (2.15b)
The only solution to (2.15a) is
fO = foo-
We use this into (2.15b) and use (2.3) to obtain
0
D Lifi+ F ) Dies il =0

We use the variation of constants formula to solve this eguat

t
fi(t) = / PO F () - Do ds. (2.16)
to
Itis possible to calculate higher order terms in the expanir f¢; see Exercise 2.
For our purposes the calculation ff(¢) is sufficient.
Now we can calculate the deviation in the expectation vafienmbservable
due to the external forcing. Lé&t)., and(-) denote the expectation value with
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respect tof., and f¢, respectively. LetA(-) be an observable (phase-space func-
tion) and denote byl (¢) the deviation of its expectation value from equilibrium,
to leading order:

A(t) = (A(Xy)) — (A(X¢))eq
B /A(w)(fa(:v,t) = feq(2)) dx

= ¢ / A(z) ( /t: e“E) F(s) - Dfs d5> dz.

Assuming now that we can interchange the order of integratie can rewrite the
above formula as

At) = e / A(z) < /t: P F(s) - Dfy d5> dx

= 5/t: </ A(z)e“o =) . Df dx) ds

= € t Rpro.a(t —s)F(s)ds, (2.17)

where we have defined thiesponse function

Reoa(t) = / A(z)e50t - Df o dx (2.18)

We set now the lower limit of integration in (2.17) to g = —oc (we extend
the definition of R, 4(¢) in (2.18) to be0 for t < 0) and assume thak,, 4(¢)
decays td) ast — +oo sufficiently fast so that we can extend the upper limit of
integration to+oo to write
+o00
A(t) =« Rproa(t —s)F(s)ds, (2.19)
—0o0

As expected (since we have used linear perturbation thettrg)deviation of the
expectation value of an observable from its equilibriurrueals a linear function
of the forcing term. Notice also that (2.19) has the form ef sblution of a linear
differential equation withR ., 4(t) playing the role of the Green'’s function. If we
consider a delta-like forcing at= 0, F'(t) = J(t), then the above formula gives

A(t) =eRg, a(l).
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Thus, the response function gives the deviation of the @afien value of an ob-
servable from equilibrium for a delta-like force.

Consider now a constant force that is exerted to the systeimat: = 0,
F(t) = FO(t) whereO(t) denotes the Heaviside step function. For this forc-
ing (2.17) becomes

At) =eF /t Ry a(t — s)ds. (2.20)
0

Example 2.5(Stochastic Resonance, see 3@c. Linear response theory provides
us with a very elegant method for calculating the noise dfiaplion factor for
a particle moving in a double well potential in the presendégh@rmal fluctua-
tions under the influence of a weak external forcing. We demghe model (cf.
eqgn.(??))

dX; = —V'(Xy)dt + Ag cos(wot) dt + /28~ dW. (2.21)

Our goal is to calculate the average positidi;) in the regimed, < 1. We can
use(2.17)and(2.18). The generator of the unperturbed dynamics is the generator
of the reversible dynamics

dXt = —V/(Xt) dt + vV 2ﬁ71 th
We have

0 1
= —— = — —BV(x) = S
D B foo() 7€ ,  F(t) = cos(wot).

The observable that we are interested in is the particle timysi The response
function is

Rryo(t) = / zekol (‘a% foo(x)> da

_ 3 / (¢5012) V(@) foo () da
BX V' (X¢))eq-

Let now{\;, ¢¢}7°, denote the eigenvalues and eigenfunctions of the unpedurb
generator(?7?). We calculate (see Exercig®e)

(X V' (Xi))eg = Y gee™ ™
=1
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with
9o = (@, 00) 1.0 (V' (), D1) e »

with (g, h = [g(x) foo(z) dz. Consequently (remember that,)., = 0;
furthermore, to ensure statlonarlty, we have et —oo)

t 00
(Xe) = ﬁAo/ Zgge_)“(t_s)cos(wos)ds

X =1
BAO S eiw()t
= == Re .
2 ;W Mg+ iw

X(w) = X' (w) —ix"( Z

Ay —l— iw’
to rewrite
(X; =) cos(wot — @) (2.22)
with
T = BAo|x(wo)| and ¢ = arctan (X (w0)> . (2.23)
X (wo)

The noise amplification factor (see eqn.), in the linear ogse approximation is

n = Blx(wo)|*. (2.24)

As expected, it is independent of the amplitude of the asoitls. and it depends
only on the spectrum of the generator of the unperturbed myceand the tem-
perature.

2.2 The Fluctuation—Dissipation Theorem

In this section we establish a connection between the regpmmction (2.18) and
stationary autocorrelation functions. L&, be a stationary Markov process in
R¢ with generatorZ and invariant distributiory,, and letA(-) and B(-) be two
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observables. The stationary autocorrelation functid(X;)B(Xy))., (See Equa-
tion (??)) can be calculated as follows
KA,B(t) = B(X0)>
= // p(z, t|xo, 0) foo (o) dxdxg

= [ [ A@)Bla0)eE 5w ~ ) s o) o
= [ [ #a@)Ba0)s(e - ) felio) daday
_ Lt
— [ FA@)B@) () da
wheref and£* act on functions of. Thus we have established the formula

KA,B(t) = (StA(x)v B(x))f ) (2.25)

oo

whereS,; = ! denotes the semigroup generateddgnd (-, -)foo denotes thd.?
inner product weighted by the invariant distribution of thifusion process.

Consider now the particular choidé(z) = f 'Df.. We combine (2.18)
and (2.25) to deduce

Ra gt Dfo (B) = Beo,a(t). (2.26)

This is a version of thdluctuation-dissipation theorerand it forms one of the
cornerstones of non-equilibrium statistical mechanicspdrticular, it enables us
to calculate equilibrium correlation functions by measgrihe response of the
system to a weak external forcing.

Example 2.6. Consider the Langevin equation from Example 2.3 in one déinan
with a constant external forcing:

§g=—-0,V(q)+eF —~vi+ \/27ﬁW.

We haveD = -0, and
B = [ Dfoc = fp.

We usg2.26)with A = p:

Ry p(t) = B{p(t)p(0))eq-
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When the potential is harmonid](¢) = %wqu, we can compute explicitly the
response function and, consequently, the velocity autelation function at equi-
librium:3

1 2
Ry q(t) = w_lei%t sin(wit), w1 =1\/wd— Vz
and
-% Vo
Ry p(t) =€ 2 (COS(wﬂf) - Sln(wlt)> .
2(4)1
Consequently:

1

(p()p(0))eqg = B_le_%t <cos(w1t) - 2l sin(wlt)> .
w
Similar calculations can be done for more general linear SDEee Exercise 5.

Example 2.7. Consider again the Langevin dynamics with a perturbatiorhiz
temperature

dqg=pdt, dp=—V'(q)dt+ Fdt—~pdt+\/2v3-1(1 + F) dW,.
We haveD = 4192 and
B = f' Dfoc = 18(p* = 7).
Let H(p,q) = p?/2 + V(q) denote the total energy. We have
FR LGH (P, q) foo = LoH (p,q) = v(—p* + 871).

Consequently (see Exercise 6):

d

“A,foz,lDfoo(t) = —ﬁaﬁA,H(t). (2.27)
Setting nowd = H we obtain
d
Ry c(t) = =2 (H(B)H(0))eq.

3Notice that this is the Green’s function for the damped hanimoscillator.
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2.3 Einstein’s Relation and the Green-Kubo Formula

Let us now calculate the long time limit ¢f(¢) when the external forcing is a step
function. The following formal calculations can be justifim particular cases, for
example for reversible diffusion process in which case #meegator of the process
is a self-adjoint operator (in the right function space) &mtttional calculus can
be used.

We calculate:

t t
/ Rra(t—s)ds = /A(;,;)eﬁ(J(tS)Dfoo d ds
0

DfOO dsdx

J, (-

( ﬁot/ =) dsA(z )) Dfooda
( <£0< B _ 1) A(m)) Dfso da
((1

/ Eot - A(w)) Dfodx
Assuming now thatim,_,, ., e“* = 0 (again, think of reversible diffusions) we
have that
t

Ti= dm ) Realt—s)ds = /(—5)1A(x)Dfoo dz. (2.28)

Using this in (2.20) and relabelingt — F we obtain

o A 1
1 1 — = - A(x)D . 2.2
lim lim — / (=£)7 A(@)D foo du (2.29)
Notice that we can interchange the order with which we takdlithits in (2.29).
We will see later that formulas of the form (2.29) enable usalzulatetransport
coefficientssuch as the diffusion coefficient. We remark also that wereamite
the above formula in the form
A(t
lim lim % = /ngfoo dx,

F—0t—-+o0

whereg is the solution of the Poisson equation

—Lé = Az), (2.30)
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equipped with appropriate boundary conditions. This igigady the formalism
that was used in Chapt@®in the study of Brownian motion in periodic potentials:

Example 2.8. Consider the Langevin dynamics in a periodic or random piidién

dgs = prdt, dpr = —VV(q)dt —ype dt + /28~ dW.

From Einstein’s formulg??) we have that the diffusion coefficient is related to the
mobility according to

D=73"11lim I (pe)
b Fo0t—toe F
where we have uset,)., = 0. We use now2.28) with A(t) = p,, D =

—Vp, foo = £ PH@P) to obtain

D= [ [ ofudvio = (~Lo.6);.. 2.31)
which is precisely the formula obtained from homogeniratiwory.

Notice also that, upon combining (2.26) with (2.29) we abtai

t

Y= tlg-noo ; K y=ipyp, (t—s)ds. (2.32)

Thus, a transport coefficient can be computed in terms ofitieintegral of an ap-
propriate autocorrelation function. This is an examplehaf@reen-Kubo formula

We can obtain a more general form of the Green-Kubo formatdisrfollows.
First, we define the generalized drift and diffusion coedfits as follows (compare
with (??) and @?)):

Vi) = lim 2B (f(X0) ~ f(X0)| Xo=2) = £f (239
and
Dio(a) = tim 3B ((f(Xen) — SO (9(Xeen) — 9(X0) | X = )
= L(f9)(x) — (9L1)(@) ~ (FLg) (@), (2.34)

wheref, g are smooth function$ The equality in (2.33) follows from the definition
of the generator of a diffusion process. For the equality2iB4) see Exercise 3.
SometimesD/9(z) is called theopérateur caré du champ

We have the following result.

“In fact, all we need i, g € D(£) andfg € D(L).
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Theorem 2.9.[The Green-Kubo formula] Lek; be a stationary diffusion process
with state spac&, generatorZ, invariant measure:(dz) and letV/ (z), D59(x)
given by(2.33)and (2.34), respectively. Then
1 o0
= /Df’fu(dx) - / E(Vf(Xt)Vf(X0)> dt. (2.35)
0

Proof. We will use the notatior-, -),, for the inner product ir.?(X, x). First we
note that

5 [ DM ulds) = (~£1.5) = De(h). (2.36)

where D.(f) is the Dirichlet form associated with the generatdr. In view
of (2.36), formula (2.35) becomes

De(f) = /OOO E(Vf(Xt)Vf(XO)) dt. (2.37)

Now we use (2.25), together with the fact that

/ £t gt = (—£))
0

to obtain -
/ kaB(t)dt = ((—L)‘lA,B)u.
0

We set nowA = B = V/ = Lf in the above formula to obtain (2.37) from
which (2.35) follows. O

Remark 2.10. In the reversible case we can show that
1 o0
5 / D59p(de) = / E(V/(X)V(Xo)) dt. (2.38)
0

In the reversible case (i.eC being a selfadjoint operator ift := L?(X, u)) the
formal calculations presented in the above proof can befjadtrigorously using
functional calculus and spectral theory. See Exercise 7

Example 2.11. Consider the diffusion proce$2.39)from Sectior??:
dXt == b(Xt) dt + O'(Xt) o th, (239)

where the noise is interpreted in the Stratonovich sense.g€herator is

L-=b(x) - V+ %V (A(x)V),
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whereA(z) = (o0”)(z). We assume that the diffusion process has a unique in-
variant distribution which is the solution of the statiogafokker-Planck equation

Lp = 0. (2.40)

The stationary procesX; (i.e. Xy ~ p(x)dx) is reversible provided that condi-
tion (??) holds:

1
b(x) = §A(:U)V10g p(x). (2.41)
Let f = z;, g = x;. We calculate
Vxl(l') =Lx; =b; + %&CAM, i=1,...d. (2.42)
We use the detailed balance conditi@41)and (2.36)to calculate
1 s
2 /D%%M(dﬂﬁ) = (—Lzj 7)),
1
= —/ <bz(x) + §8kAlk(x)> zjp(x)dx

= 1/(Az'lcakp(ﬂc) + Ok A (2)p(2)) 25 d

2
= %/Alj(x)p(x) dx.

The Green-Kubo formulé.35)gives:

: / Ay (@)pla) do = /O +°°E(vxi(xt)wf(xo)) i, (2.43)

where the driftl’*i(x) is given by(??).

2.4 Discussion and Bibliography

Linear response theory and the fluctuation-dissipatioortra form the cor-
nerstones of non-equilibrium statistical mechanics. €hepics can be found in
any book on non-equilibrium statistical mechanics suct?8s41, 3, 50, 34]. An
earlier reference is [6]. An early review article is [27].



32CHAPTER 2. LINEAR RESPONSE THEORY FOR DIFFUSION PROCESSES

In Section 2.1 we considered stationary processes whoagdnt density has
a smooth density with respect to Lebesgue measure. Thisdeglseveral in-
teresting problems such as chaotic dynamical systems ohattic PDEs. Lin-
ear response theory for deterministic dynamical systemeviewed in [45] and
for stochastic PDEs in [15]. Rigorous results on linear oese theory and the
fluctuation-dissipation theorem for Markov processes aesqgnted in [7]. There
is a very large literature on the mathematical justificatiblinear response theory,
the fluctuations dissipation theory and the Green-Kubo t&amOur approach on
the Green-Kubo formula in Section 2.3 and, in particularedilem 2.9 is based
on [23, 48]. See also [22].

Formulas of the form (2.31) for the diffusion coefficient damjustified rigor-
ously using tools either from stochastic analysis (the imgate central limit the-
orem) or the theory of partial differential equations (h@®oization theory). The
diffusion coefficient for reversible diffusions (togetheith the functional central
limit theorem) is proved in [24]. Einstein’s formula for thdfusion coefficient of
a Brownian patrticle in a periodic potential is justified nigasly in [44].

Linear response theory and the fluctuation-dissipationrdra have a found a
wide range of applications. Examples include climate madgl31] and galactic
dynamics [4, Ch. 5].

Linear response theory, the fluctuation—dissipation #oand Green—Kubo
formulas are important topics in quantum non-equilibriutatistical mechanics.
See, for example [17, 18] and the references therein. Se¢3k

2.5 Exercises

1. LetX; be the solution of (2.8) and assume that we add a weak exferoalg to
both the drift and the noise. Write down the equation for tdyybed dynamics
and the formulas fo! andD.

2. Calculate higher order terms in the expansion (2.14).thisen order to calcu-
late higher order terms in the calculation of expectatidoes of observables.

3. Let X; be a stationary Markov process with state spAcegeneratorL and
invariant measurg and letf,g € D(£) andfg € D(L). Show that

tim 7 B((F(X0)~ 7 (X0) (9(X0)~9(X0) [ Xo = ) = Lo(F0) (@) ~(9L£) (@) ~(fLg) )
(2.44)



2.5. EXERCISES 33

in LY(X, p).

4. Let X; € R be a dynamical system at equilibrium fat= —oco, which is
perturbed away from equilibrium by a weak external foftig). Let A(x) be a
scalar phase space function and consider the linear respelagion

AA(t) = / v(s)F(t — s) ds, (2.45)
R
whereAA(t) = (A(X})) — (A(X¢))eq. Thecausality principleimplies that
~v(t) =0, for t<DO. (2.46)

Assume thaty(t) € L*(R).

(&) Show that the linear response relation (2.45) can béenrit the form

~

AA(w) = F(w)F(w), (2.47)

-~

where f(w) denotes the Fourier transform of a functifft) (we assume
that all Fourier transforms in (2.47) exist). The Fouriemsform of the
response functiofy(w) is called thesusceptibility

(b) Show that the causality principle (2.46) implies thév), w € C is an
analytic function in the upper half of the complex half plane

(c) Assume furthermore thaitm,,,_, ;. ﬁfy(w) = 0. Apply Cauchy’s inte-
gral theorem to the function

_ Aw)
f(w) - w — C7
where{ € R and use the residue theorem to prove klmamers-Kronig
relations
wr(©) = 1p / 1) g, (2.48a)
T Jrw—(
Q) = —17?/ 1) g, (2.48b)
T Jrw—(

wherey(w) = vr(w) + 471 (w) andP denotes the Cauchy principal value.
(Hint:integrate the functiory (w) alongR and a semicircle in the upper
half plane, avoiding the poirt € R with a small semicircle of radiusin
the upper half plane ).
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(d) Use the fact that/(¢) is a real valued function to obtain the alternative
formulas

2 o
Yr(Q) = —7’/0 :jgl_(ug)z dw, (2.492)

s

(¢ = —%P Rf;’%_(tl dw. (2.49b)

More information about the Kramers-Kronig relations carfdaend in [6, Sec.
VII1.3], [41, Sec. X1.1.2].

5. Let A andX strictly positive and positive, respectivelyx d matrices and con-
sider the linear SDE

dX; = —AX; dt + V2% dW, (2.50)

(&) Consider a weak external forcing. Calculate the respdusction. Use
this to calculate the equilibrium autocorrelation matrix

(x(t) © 2(0))eq-

(b) Calculate the susceptibilities corresponding to tepoese function& ., ., (t)
(see Exercise 4).

(c) Consider weak fluctuations in the diffusion matkix Calculate the re-
sponse function and the equilibrium autocorrelation fiomcbf the (ap-
propriately defined) energy.

6. Use (2.25) to prove (2.27).

7. LetL be the generator of a reversible diffusion process. Usepbetal theo-
rem for self-adjoint operators to provide a rigorous praaf238).
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