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Classical Critical Phenomena
A Historical Overview I

Andrews (1869): The critical point
Van der Waals (1873): Equation of state
Weiss (1907): Ferromagnetism
Lenz (1920): Ising model
Ising (1925): Solution of 1D-Ising
Ehrenfest (1933): Classification of transitions
Landau (1937): Unified theory, universality
Kramers and Wannier (1941): Tc for 2D-Ising
Onsager (1942): Solution of 2D-Ising
Yang (1952): M(T) for 2D-Ising
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Classical Critical Phenomena
A Historical Overview II

Stueckelberg and Petermann (1953): Ultraviolet renormalisation
Gell-Mann and Low (1954): Renormalisation scheme in QED
Domb and Hunter, and Widom (1965): Scaling hypothesis
Kadanoff (1966): Generalised scaling and block spins
Wilson (1971): Use RG in critical phenomena
Wilson and Fisher (1972): Small parameter ε = dc − d

Gross, Politzer and Wilczek (1973): Asymptotic freedom
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Classic Example: Bond Percolation
The Model

On a 2D grid, bonds are active with probability p
Cluster: set of sites connected through active bonds
Temperature-like variable: p (drives transition)

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 7 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Classic Example: Bond Percolation
The Model

On a 2D grid, bonds are active
with probability p

Cluster: set of sites connected
through active bonds

Temperature-like variable: p
(drives transition)

Introduce site-site correlation function g(~r1,~r2)

Asymptotically: Exponential decay g(~r1,~r2) ∝ exp(−|~r1 −~r2|/ξ)

At p = pc the correlation length ξ diverges
→ No characteristic scale
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Classic Example: Bond Percolation
The Model

On a 2D grid, bonds are active
with probability p

Cluster: set of sites connected
through active bonds

Temperature-like variable: p
(drives transition)

History:
Three dimensional polymers: Flory 1941
Mathematics: Hammersley and Broadbent 1954
pc = 1/2 conjectured in 1955, proven (Kesten) 1980
Renaissance: CFT 1992, SLE 2001
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Classic Example: Bond Percolation
The Model

On a 2D grid, bonds are active
with probability p

Cluster: set of sites connected
through active bonds

Temperature-like variable: p
(drives transition)

Observables. . .
Order parameter θ, percolation probability (coverage by infinite
cluster): vanishes in one phase, picks up in the other
Cluster size distribution (cluster number density) P(s)
Crossing probability Ep (cluster connects two opposite sides)
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Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scanning through the transition

Deep inside disordered phase: Mean Field Theory
Crossover region: Fluctuations start to take over
Critical region: Non-trivial scaling
Crossover towards ordered phase
Warning: Gaussian Theory (trivial theory) does not order

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 8 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Outline

1 Classical Critical Phenomena and Phase Transitions
Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

2 Non-Equilibrium Critical Phenomena
Absorbing State Phase Transition
Species Borders
Summary

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 9 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

Scaling around the critical point (p = pc)
The infinite system

Scaling

Divergent correlation length: ξ ∝ |p − pc|
−ν

Observables and parameters are related by scaling relations
Example: 〈s〉 ∝ |p − pc|

−(2−τ)/σ

Observables “look the same under rescaling”: . . .
Even in infinite systems: Scaling is asymptotic (lower cutoff)
Infinite system away from critical point:

P(s) = as−τG
(
s/ξD)

Universal scaling function: G
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Scaling

Divergent correlation length: ξ ∝ |p − pc|
−ν

Observables and parameters are related by scaling relations
Example: 〈s〉 ∝ |p − pc|

−(2−τ)/σ

Observables “look the same under rescaling”:
Probability for cluster size s is P(s)
Probability for cluster size s ′ = 2s is a multiple of P(s)
This multiple is the same, independent of s
P(s) does not possess an intrinsic scale
P(s) has the form of a power law: P(s) = as−τ

Even in infinite systems: Scaling is asymptotic (lower cutoff)
Infinite system away from critical point:

P(s) = as−τG
(
s/ξD)

Universal scaling function: G
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What is so striking about scaling?
Part I: Self-similarity!

Central idea: “Power law” means no intrinsic scale

The function ex − 1 on a
small scale

The function ex − 1 on a large
scale
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Part I: Self-similarity!

Central idea: “Power law” means no intrinsic scale

The function x2 on a small
scale

The function x2 on a large
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What is so striking about scaling?
Part I: Self-similarity!
Central idea: “Power law” means no intrinsic scale

Trivial powerlaws (can) correspond to dimensional constraints
Even trivial powerlaws (can) have deep physical meaning
Non-trivial powerlaws

Need finite (microscopic) scale for dimensional consistency
Are not result of dimensional constraints
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Scaling in finite systems

Infinite systems: Original scenario
Finite system: Critical scaling where ξ � L
Crossover into finite size scaling region

width: L−1/ν
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What is so striking about scaling?
Part II: Universality

Scale invariance and Universality
Single scale: correlation length
Universality classes – universal quantities

Exponents
Amplitude ratios
Effectively same physics everywhere in asymptotia

Many microscopic (interaction) details irrelevant for universal
features
However: Universality of long range behaviour only
Non-universal: pc, amplitudes, lower cutoff, amplitude of upper
cutoff
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Non-Equilibrium Critical Phenomena
Example: Absorbing State Phase Transition

Absorbing State Phase Transition

System runs “until it hits an absorbing state”
Two phases: Eventually in absorbing state or always active
Continuous transition between absorbing and active
Problem: Finite systems
Paradigm: directed percolation
Grassberger: Single absorbing state? DP!
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Absorbing State Phase Transition
Contact Process

CP is DP with asynchronous updates
Active site become inactive: rate ε

Inactive site become active: rate c per active neighbour
Rescale time, so that ε effectively disappears and c → λ = c/ε

Parameter that drives transition: λ → λc = 1.6488 . . .

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 16 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Absorbing State Phase Transition
Contact Process

CP is DP with asynchronous updates
Active site become inactive: rate ε

Inactive site become active: rate c per active neighbour
Rescale time, so that ε effectively disappears and c → λ = c/ε

Parameter that drives transition: λ → λc = 1.6488 . . .

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 16 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Absorbing State Phase Transition
Contact Process

CP is DP with asynchronous updates
Active site become inactive: rate ε

Inactive site become active: rate c per active neighbour
Rescale time, so that ε effectively disappears and c → λ = c/ε

Parameter that drives transition: λ → λc = 1.6488 . . .

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 16 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Absorbing State Phase Transition
Contact Process

CP is DP with asynchronous updates
Active site become inactive: rate ε

Inactive site become active: rate c per active neighbour
Rescale time, so that ε effectively disappears and c → λ = c/ε

Parameter that drives transition: λ → λc = 1.6488 . . .

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 16 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Absorbing State Phase Transition
Contact Process

CP is DP with asynchronous updates
Active site become inactive: rate ε

Inactive site become active: rate c per active neighbour
Rescale time, so that ε effectively disappears and c → λ = c/ε

Parameter that drives transition: λ → λc = 1.6488 . . .

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 16 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Outline

1 Classical Critical Phenomena and Phase Transitions
Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling

2 Non-Equilibrium Critical Phenomena
Absorbing State Phase Transition
Species Borders
Summary

G. Pruessner (Imperial College London) Critical Phenomena and Species Borders Eötvös University, 03/2006 17 / 24



Classical Critical Phenomena and Phase Transitions
Non-Equilibrium Critical Phenomena

Absorbing State Phase Transition
Species Borders
Summary

Contact Process in Population Dynamics
Spatially varying temperature-like variable

Biological systems: Spatially varying λ

(like scanning through all λ simultaneously)
λ = λ(x) = λc + λ ′x

Continuum vs. lattice (vanishing vs. finite ξ)
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The Contact Process with λ(x)
Part I: The interface

Interface extends inside the disordered region
“Autonomous” fluctuations only in ordered phase
After long times: Disordered phase fluctuates by invasion only

How to locate/define the interface?
Properties? Wetting?

What is the effect of higher order interactions?
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The Contact Process with λ(x)
Part II: Scaling regions

Spatial behaviour reflects critical regions of equilibrium system
Where L � ξ: critical scaling
FSS region: L ≈ ξ. . .
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The Contact Process with λ(x)
Part III: Identifying the FSS region ∆X

What is the size ∆x of the scaling region?
“Naïve” FSS region: ξbulk ≈ L
∆x ∝ λ′ −1L−1/ν

Problem: Width of correlated region underestimated
Better guess(?): Correlated patches

Identify a patch around λc, within which every point can at least
“reach back” to λc

∆x ∝ λ′ −ν/(1+ν)

General consideration: Anisotropy, physical space versus lattice
space
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The Contact Process with λ(x)
Part IV: Some Numerical Results

Numerics compatible to “scaling region argument”, but not perfect
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1 Classical Critical Phenomena and Phase Transitions
Historical Overview
Classic Example: Bond Percolation
Scaling and Finite Size Scaling
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Summary
Phase transition driven by spatial variation of temperature-like
variable: Theoretically very appealing
In different phases, standard methods should apply
Open problem: What is the size and the scaling of the scaling
region?
Further numerics needed

Many thanks to Nicholas P. Moloney, Zoltán Rácz and Beáta Oborny!
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