What can and cannot be done with classical DFT at interfaces?

Gunnar Pruessner

Department of Physics Imperial College London

INCEMS M18 Meeting, Karlsruhe, Jan 2007

Outline

Introduction

- Model
- Observables and Parameters
- Classical DFT
- Relation to phase field modelling

2 Applying DFT to Intergranular Films

- Parametrisation
- Technical limitations
- Summary: Doable and not doable

Introduction

Model

Model

Two confining lattices

- Interface: freely rearranging, "liquid" layer in between
- Reservoir: chemical potential µ

Imperial College London

DFT for Intergranular Films

Model

Model

- Two confining lattices
- Interface: freely rearranging, "liquid" layer in between
- Reservoir: chemical potential µ

Imperial College London

G. Pruessner (Imperial)

DFT for Intergranular Films

Model

Model

- Two confining lattices
- Interface: freely rearranging, "liquid" layer in between
- Reservoir: chemical potential μ

G. Pruessner (Imperial)

DFT for Intergranular Films

3/11

Karlsruhe, 01/2007

Key observables

- Density profile $\rho(\vec{x})$
- Thermodynamic properties (grand potential, steric forces, pressure...)

Observables and Parameters

- Key observables: Density profile, potentials, pressure ...
- Parameters
 - temperature, chemical potential, ...
 - relative lattice orientation: gap (phase), tilt, twist

- Key observables: Density profile, potentials, pressure ...
- Parameters
 - temperature, chemical potential, ...
 - relative lattice orientation: gap (phase), tilt, twist

- Key observables: Density profile, potentials, pressure ...
- Parameters
 - temperature, chemical potential, ...
 - relative lattice orientation: gap (phase), tilt, twist

- Key observables: Density profile, potentials, pressure ...
- Parameters
 - temperature, chemical potential, ...
 - relative lattice orientation: gap (phase), tilt, twist

The principles of Classical Density Functional Theory Haymet and Oxtoby, 1981 and 1982

Classical Density Functional Theory

 Functional Taylor series of effective one particle potential of complicated liquid over reference (bulk) system

$$\ln\left(\frac{\rho(\mathbf{r})}{\rho_0}\right) = \int d^d r' \ C^{(2)}(\mathbf{r}' - \mathbf{r})(\rho(\mathbf{r}') - \rho_0)$$

using direct correlation function $C^{(2)}(\mathbf{r})$

- To be solved with certain boundary conditions.
- Reparametrise $\rho(\mathbf{r})$:

$$\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\imath \mathbf{k}_n \mathbf{r}} \right)$$

Separation of length scales.

G. Pruessner (Imperial)

The principles of Classical Density Functional Theory Haymet and Oxtoby, 1981 and 1982

Classical Density Functional Theory

• Expand $\mu_n(\mathbf{r}')$ about $\mathbf{r}' = \mathbf{r}$ and use Fourier coefficients of $C^{(2)}$:

$$\ln\left(1+\sum_{n}\mu_{n}(\mathbf{r})e^{\iota\mathbf{k}_{n}\mathbf{r}}\right)=\sum_{n}e^{\iota\mathbf{k}_{n}\mathbf{r}}V''\rho_{0}\left(c_{n}\mu_{n}(\mathbf{r})-\iota\nabla c_{n}\nabla \mu_{n}(\mathbf{r})-\ldots\right)$$

- Problem: All μ_n on both sides, need to decouple
- Idea: Demand for all r:

$$\ln\left(1+\sum_{n}\mu_{n}(\widetilde{\mathbf{r}})e^{\imath\mathbf{k}_{n}\mathbf{r}}\right)=\sum_{n}e^{\imath\mathbf{k}_{n}\mathbf{r}}V''\rho_{0}\left(c_{n}\mu_{n}(\widetilde{\mathbf{r}})-\imath\nabla c_{n}\nabla \mu_{n}(\widetilde{\mathbf{r}})-\ldots\right)$$

The principles of Classical Density Functional Theory Haymet and Oxtoby, 1981 and 1982

Classical Density Functional Theory

Now Fourier transform

$$V^{-1} \int d^{d}r \ e^{-\iota \mathbf{k}_{m}\mathbf{r}} \ln \left(1 + \sum_{n} \mu_{n}(\widetilde{\mathbf{r}}) e^{\iota \mathbf{k}_{n}\mathbf{r}}\right) = V^{\prime\prime} \rho_{0}\left(c_{m}\mu_{m}(\widetilde{\mathbf{r}}) - \iota \nabla c_{m} \nabla \mu_{m}(\widetilde{\mathbf{r}}) - \ldots\right)$$

• Surprise: Equivalent to Allen-Cahn phase field model.

Phase field modelling derived from DFT

Recipe

- Start with (and keep it) the full grand potential in terms of $\rho(\mathbf{r})$
- Reparametrise and expand (functionally and in space)
- Simplify: Within a unit cell μ_n(**r**) is nearly constant Separation of length scales
- Results in Allen-Cahn phase field model:

$$\mathcal{W} = \int_{\Omega} d^d r \ f(\phi(\mathbf{r})) - \frac{\epsilon^2}{2} \phi(\mathbf{r}) \nabla^2 \phi(\mathbf{r})$$

non-conserved order parameter

Kobayashi, Warren, Carter (2000) [with orientation field integrated out]

Outline

Introduction

Model

- Observables and Parameters
- Classical DFT
- Relation to phase field modelling

2 Applying DFT to Intergranular Films

- Parametrisation
- Technical limitations
- Summary: Doable and not doable

Parametrisation

What does the parametrisation mean physically? Density profile: $\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\iota \mathbf{k}_n \mathbf{r}}\right)$ Boundary Conditions: Fix $\mu_n(\mathbf{r})$ on the far left and the far right.

Possible if Σ boundary; Feasible if small enough (\rightarrow number of coefficients

Parametrisation

What does the parametrisation mean physically? Density profile: $\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\iota \mathbf{k}_n \mathbf{r}}\right)$ Boundary Conditions: Fix $\mu_n(\mathbf{r})$ on the far left and the far right. Shift/Gap: No problem!

Possible if Σ boundary; Feasible if small enough (\rightarrow number of coefficients

What does the parametrisation mean physically?

Density profile: $\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\iota \mathbf{k}_n \mathbf{r}}\right)$ Boundary Conditions: Fix $\mu_n(\mathbf{r})$ on the far left and the far right. Shift/Gap: No problem!

What if orientations are different on both sides?

Change Fourier domain!

Possible if Σ boundary; Feasible if small enough (\rightarrow number of coefficients)

What does the parametrisation mean physically?

Density profile: $\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\iota \mathbf{k}_n \mathbf{r}}\right)$

Boundary Conditions: Fix $\mu_n(\mathbf{r})$ on the far left and the far right. Shift/Gap: No problem!

What if orientations are different on both sides?

Change Fourier domain!

Possible if Σ boundary; Feasible if small enough (\rightarrow number of coefficients)

What does the parametrisation mean physically?

Density profile: $\rho(\mathbf{r}) = \rho_0 \left(1 + \sum_n \mu_n(\mathbf{r}) e^{\imath \mathbf{k}_n \mathbf{r}}\right)$

Boundary Conditions: Fix $\mu_n(\mathbf{r})$ on the far left and the far right. Shift/Gap: No problem!

What if orientations are different on both sides?

Change Fourier domain!

Possible if Σ boundary; Feasible if small enough (\rightarrow number of coefficients).

What are the technical obstacles?

Key obstacles:

- Can only cope with one Fourier domain (practically excludes different crystal structures).
- Need to have stable solid phases (an issue in itself), *i.e.* μ_n of the solid phase must be a solution of

$$\int d^{d}r \ e^{\imath \mathbf{k}_{m}\mathbf{r}} \ln \left(1 + \sum_{n} \mu_{n} e^{\imath \mathbf{k}_{n}\mathbf{r}}\right) = V^{\prime\prime} \rho_{0} c_{m} \mu_{m}$$

- Numerical convergence during root-finding
- Complicated geometry, i.e. setup
- Improving expansion systematically (C⁽³⁾, ∇³, higher modes) is possible but might ruin convergence.

Clear mathematical foundation of the theory

- Appropriate parametrisation for grain boundaries (Σ only, twist and tilt)
- Grand potential functional to be globally minimised (std. minimisation methods)
- Relation to phase field modelling (observables, parameters, limitations; publication in preparation [contribution to D3.2])
- Implementation for gaps (not yet convergent)

- Clear mathematical foundation of the theory
- Appropriate parametrisation for grain boundaries (Σ only, twist and tilt)
- Grand potential functional to be globally minimised (std. minimisation methods)
- Relation to phase field modelling (observables, parameters, limitations; publication in preparation [contribution to D3.2])
- Implementation for gaps (not yet convergent)

- Clear mathematical foundation of the theory
- Appropriate parametrisation for grain boundaries (Σ only, twist and tilt)
- Grand potential functional to be globally minimised (std. minimisation methods)
- Relation to phase field modelling (observables, parameters, limitations; publication in preparation [contribution to D3.2])
- Implementation for gaps (not yet convergent)

- Clear mathematical foundation of the theory
- Appropriate parametrisation for grain boundaries (Σ only, twist and tilt)
- Grand potential functional to be globally minimised (std. minimisation methods)
- Relation to phase field modelling (observables, parameters, limitations; publication in preparation [contribution to D3.2])
- Implementation for gaps (not yet convergent)

- Clear mathematical foundation of the theory
- Appropriate parametrisation for grain boundaries (Σ only, twist and tilt)
- Grand potential functional to be globally minimised (std. minimisation methods)
- Relation to phase field modelling (observables, parameters, limitations; publication in preparation [contribution to D3.2])
- Implementation for gaps (not yet convergent)

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values

- Complete theory for Σ boundaries contribution to INCEMS M3.4 (general description) — relevance?
- Probably: Convergence for single species, at least in single mode or common amplitude approximation
- Narrow boundaries using r-independent μ_n
- Closed, dense structures. BCC, FCC.

[Probably] Not doable

- Multiple species (lack of reliable data, non-convergence of numerics, too many parameters)
- Open, network structures (require 3 and higher body interactions)
- Impurities (again, too many parameters)
- More complicated boundaries, big Σ values