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This is an attempt to deliver, within a couple of hours, a few key-concepts of non-

equilibrium statistical mechanics. The material covered by the notes is sometimes a bit

wider in scope and often more detailed than a presentation can be.

The goal is to develop some ideas of contemporary research. I start with some basic

methods of statistics as they are used in statistical mechanics. Many of the ideas are

illustrated or even introduced by examples. The second chapter is more specialised: First

I will present the concept of LANGEVIN equations, before discussing critical dynamics

(introducing the notion of relaxation to equilibrium as opposed to far-from-equilibrium)

and finally (if time permits) reaction-diffusion processes.

The plan is to spend at least two hours on the first chapter and at the remaining time

of up to three hours on the second chapter.

Two main sources have been used to prepare these notes:

van Kampen, N. G., 1992, Stochastic Processes in Physics and Chemistry (Elsevier Sci-

ence B. V., Amsterdam, The Netherlands), third impression 2001, enlarged and re-

vised edition.

Täuber, U. C., 2005, Critical dynamics, preprint available at http://www.phys.

vt.edu/ ˜ tauber/utaeuber.html , (unpublished).
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Chapter 1

Introduction

This chapter lays the theoretical foundation for the following material. The content is

rather general and not restricted to non-equilibrium statistical mechanics, although some

observables and techniques are characteristic for this field.

Firstly, I will introduce some basic techniques from statistics, in particular generating

functions. The framework of generating functions will then be used to give a simple

prove of the central limit theorem. In the last part of this chapter, some basic notions of

stochastic processes will be discussed.

1.1 Probabilities

A few reminders regarding probability are in order:

P(¬A) = 1 − P(A) (1.1a)

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (1.1b)

Here A ∪ B means that A or B occur (not exclusive). On the other hand A ∩ B means

that A and B occur simultaneously. If A ∩ B = ∅ then A and B are mutually exclusive.

If P(A,B) (joint probability) factorises P(A,B) = P(A)P(B) then A and B are said to be

independent. The conditional probability P(A|B) (pronounced “probability of A given

B”) is given by BAYES’s theorem

P(A|B) =
P(A ∩ B)
P(B)

=
P(B|A)P(A)

P(B)
(1.2)

Note that if P(A),P(B) 6= 0 and A,B are independent, then they cannot be mutually

exclusive, because as they are independent P(A ∩ B) = P(A)P(B) 6= 0, but if A ∩ B = ∅
then P(A ∩ B) = 0. That makes a lot of sense: If A excludes B from occurring, than A are

obviously not independent.
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8 CHAPTER 1. INTRODUCTION

1.2 Probability density function

We start this section by considering the probability density function (PDF) Pa (x),

which, in loose terms, is the probability of the random variable x to have a specific value.

More precisely, Pa (x)dx is the probability that a is in the interval [x, x + dx] and it is

very important to realise that Pa (x) is a density (in order to keep the notation simple, I

will later use the subscript a for all sorts of purposes). The integral over the density is

normalised, ∫∞

−∞

dxPa (x) = 1 (1.3)

Very often, it is more convenient to consider the cumulative distribution function (CDF)

F(z) =

∫z

−∞

dxPa (x) (1.4)

which is the probability that x is in the interval ]∞, z]. This definition is more convenient,

because one does not need to introduce the whole notion of probability densities, but can

stick with the concept of finite probabilities. Obviously, the lower integration limit in (1.4)

should be chosen suitably and might be changed to, say, 0, if the PDF has corresponding

support. A PDF is non-negative and therefore the CDF is increasing in z; according to

(1.3) limz→∞ F(z) = 1 and from (1.4)

Pa (x) =
d

dz
F(z) (1.5)

In the following, we will use the PDF as the starting point for all definitions and deriva-

tions.

It is an obvious extension to introduce vector valued random variables x or (equival-

ently) consider the joint PDF Pa,b (x,y) (where x and y could also be regarded as two

components of a vector). In that case one has, quite naturally,

Pa (x) =

∫∞

−∞

dyPa,b (x,y) (1.6)

where the integration on the right is also known as marginalisation over the nuisance

variable y. Two random variables are said to be independent if the joint PDF factorises,

i.e. if Pab (x,y) = Pa (x)Pb (y).

1.3 Moments and cumulants

The nth moment 〈xn〉 is defined as

〈xn〉 =
∫∞

−∞

dx xnPa (x) (1.7)
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which includes the normalisation (1.3) as the special case n = 0. By the properties of an

integral we have 〈f(x) + g(x)〉 = 〈f(x)〉 + 〈g(x)〉. The extension to joint PDFs is straight

forward

〈xnym〉 =
∫∞

−∞

dx

∫∞

−∞

dyxnymPab (x,y) (1.8)

If a and b 1 are independent, the joint probability factorises and 〈xnym〉 = 〈xn〉 〈ym〉. If

〈xy〉 = 〈x〉 〈y〉 then x and y are said to be uncorrelated. While independence entails that

the variables are uncorrelated, the converse does not hold, i.e. if two random variables

are uncorrelated, they are not necessarily independent (although many authors ignore

this fact).

Cumulants are defined as derivatives of the logarithm of the moment generating func-

tion, which will be discussed below. For the time being, we introduce only two cumu-

lants, the first cumulant

〈x〉c = 〈x〉 (1.9)

and the second cumulant

〈

x2
〉

c
=

〈

x2
〉

− 〈x〉2
=

〈

(x− 〈x〉)2
〉

= σ2 (x) (1.10)

which equals the variance of the random variable x. Finally, the third cumulant is

〈

x3
〉

c
=

〈

(x− 〈x〉)3
〉

=
〈

x3
〉

− 3
〈

x2
〉

〈x〉+ 2 〈x〉3 (1.11)

but the fourth cumulant is (sic!)

〈

x4
〉

c
=

〈

(x− 〈x〉)4
〉

− 3
〈

(x− 〈x〉)2
〉2

(1.12)

It is worth noting that the notation of moments and cumulants is somewhat loose:

Comparing 〈xn〉 and 〈xnym〉 in (1.7) and (1.8) respectively, it is not clear whether one

has to integrate over both variables, x and y, or only over one, in which case 〈xnym〉 =
ym 〈xn〉. Similarly,

〈

x2
〉

c
is actually an integral over a square, as well as a square of an

integral. This ambiguity is usually resolved by the context.

1.4 Generating functions

For many situations, the moment generating function (MGF) is more suitable than the

“plain” PDF. The moment generating function Ma (z) is defined as

Ma (z) =

∞∑

i=0

zn

n!
〈xn〉 (1.13)

1. . . or equivalently x and y, which are actually the concrete values of the random variable a and b re-
spectively — I will be quite liberal when using the subscript and the argument, but the argument is always
where the function is evaluated



10 CHAPTER 1. INTRODUCTION

if the sum converges. The MGF has the very useful property that

dn

dzn

∣

∣

∣

∣

z=0

Ma (z) = 〈xn〉 (1.14)

By noting that 〈exp (xz)〉 has exactly the same property and assuming that Ma (z) is ana-

lytic around z = 0, one has

Ma (z) = 〈exz〉 (1.15)

In particular, Ma (0) = 1 by normalisation.

Considering 〈exp (xz)〉 in detail, shows that it is the LAPLACE transform of the PDF,

i.e. the MGF is the LAPLACE transform of the PDF:

Ma (z) =

∫∞

−∞

dx exzPa (x) (1.16)

Differentiating n times with respect to z and evaluating at z = 0 brings down n factors

of x, confirming (1.14). Evaluating the MGF for imaginary arguments turns the LAPLACE

transform into a Fourier transform, which is also known as the characteristic function.

A discretised version of the MGF is easy to write down:

Ma (z) =
∑

x

Pa (x) e
xz (1.17)

although in discrete problems where x ∈ Z the factor exp (xz) often is replaced by zx and

the moments are generated by
(

z d
dz

)n∣
∣

∣

z=1
. Note that the coefficient in front of exp (xz)

in Eq. (1.17) are the probabilities of x.

1.4.1 Moment generating function of a sum

The MGF is particularly useful when calculating sums and differences of random vari-

ables. We start with the example of two independent random numbers x and y drawn

from a (factorising) PDF Pab (x,y) = Pa (x)Pb (y). The MGF of the sum of these two

random numbers is

Ma+b (z) =

∫∞

−∞

dx

∫∞

−∞

dy ez(x+y)Pab (x,y)

=

∫∞

−∞

dx ezxPa (x)

∫∞

−∞

dy ezyPb (y) = Ma (z)Mb (z) (1.18)

which applies, by the same derivation, to the characteristic function.

The PDF of a multiple of a random variable, say y = αx can be constructed either

by considering the cumulative distribution introduced above, or by using Px (x)dx =

Py (y)dy, so that Py (y) = Px (y/α)dx/dy = Px (x) /α. The MGF of the new random

variable is

My (z) =

∫∞

−∞

dy ezyP (y) =

∫∞

−∞

dx ezαxP (x) = Mx (zα) (1.19)
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which is not surprising, given that 〈yn〉 = αn 〈xn〉, i.e. every derivative of the MGF must

shed a factor α. In general, the random variable αx + βy has MGF Mx (zα)My (zβ),

which again applies similarly to the characteristic function.

The characteristic function has the immediate advantage that we are more used to

FOURIER transforms and can write down its inverse immediately. Such an inverse allows

us to derive the PDF from the MGF.

1.4.2 Cumulant generating function

Cumulants have been introduces earlier (see Eq. (1.9)-(1.12)), but generally, they are

defined as the derivatives of the logarithm of the MGF. Accordingly, the cumulant gen-

erating function (CGL) Cx (z) is defined as

Cx (z) = lnMx (z) . (1.20)

so that
dn

dzn

∣

∣

∣

∣

z=0

Ca (z) = 〈xn〉c (1.21)

similar to Eq. (1.14).

The zeroth cumulant is Cx (0) = ln 1 = 0, the first cumulant is

d

dz

∣

∣

∣

∣

0

Cx (z) =

d
dz

∣

∣

∣

0
Mx (z)

Mx (0)
= 〈x〉 , (1.22)

just the first moment. The second derivative of Cx (z) in obvious notation is

Cx (z)
′′
=

Mx (z)
′′

Mx (z)
−

Mx (z)
′2

Mx (z)
2

(1.23)

and it gets more and more complicated.

Shifting the observable by x0 changes the MGF to Mx (z) exp (zx0) and therefore the

CGF becomes Cx (z) + zx0, so that only the first cumulant is affected by a shift.

Exercise 1: Check Eq. (1.9)–(1.12).

1.5 GAUSSians

GAUSSians play a central rôle in all non-equilibrium statistical mechanics and we will

see below why this is so. Let’s briefly recapitulate some of its properties. We define the

GAUSSian

G(x; x0,σ2) =
1√

2σ2π
e
−

(x−x0)
2

2σ2 (1.24)
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which is normalised, as one can show by straight forward integration. Its mean is x0:

∫∞

−∞

dxG(x; x0,σ2)x =

∫∞

−∞

dxG(x; x0,σ2)(x− x0) +

∫∞

−∞

dxG(x; x0,σ2)x0 (1.25)

but the first integral vanishes by symmetry and the second is just the normalisation times

x0. The second moment is slightly harder, see below; we note that generally

∫∞

−∞

dxG(x; 0,σ2)x2n = (2n− 1)!!(σ2)n (1.26)

with (2n − 1)!! = 1 · 3 · 5 . . . (2n − 1) is the double factorial. This can be proven, el-

egantly, using WICK’s theorem, which states that the 2n’th moment is (σ2)n times the

number of unique ways to pair 2n elements. For example 1, 2, 3, 4 has pairs {(1, 2), (3, 4)},

{(1, 3), (2, 4)}, and {(1, 4), (2, 3)}. The general statement can be shown easily: Pick any one

of 2n and find a partner, of which there are 2n− 1. Pick any next one, and find a partner

again, out of 2n − 3. Repeat until only one is left, so (2n − 1)(2n − 3) . . . 3 · 1. Alternat-

ively, take all (2n)! permutations of the numbers 1, 2, . . . , 2n and consider neighbouring

numbers as pairs, first and second, third and fourth etc.. There are n! permutations for

each such “configuration” which leaves the pairs unchanged, and 2n possible swaps that

leave them unchanged:

(2n)!

2nn!
=

1 · 2 · 3 · . . . · (2n)
2 · 4 · 6 · . . . · (2n) = (2n− 1)!! (1.27)

The MGF of a GAUSSian is itself a (non-normalised) GAUSSian, which one can see by

completing squares (similarly for the characteristic function),

(x− x0)
2

2σ2
− xz =

(x− x0 − zσ
2)2

2σ2
−

(x0 + zσ
2)2 − x2

0

2σ2
(1.28)

so that ∫∞

−∞

dxG(x; x0,σ2)exz = e
(x0+zσ

2)2−x2
0

2σ2 (1.29)

Taking the logarithm produces the cumulant generating function of a GAUSSian:

CG (z) =
(x0 + zσ

2)2 − x2
0

2σ2
= zx0 +

1

2
z2σ2 (1.30)

As required, CG (0) = 0, the first cumulant is x0 as expected and the second cumulant

(the variance) is just σ2. Surprisingly, and crucially, all higher cumulants vanish exactly.

One might ask: Is every PDF, all cumulants of which vanish apart from the first and the

second, a GAUSSian? Yes, that is indeed the case: Together with C (0) = 0, the first and

the second cumulant fix the coefficients in any second order polynomial, so such a PDF

will always produce a CGF of the form Eq. (1.30). PDFs all cumulants of which vanish

apart from the first can be obtained by taking the limit limσ2→0 for the GAUSSian, or
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by taking the inverse LAPLACE transform of exp (zx0), which gives (remember that this

procedure is closely related to an inverse FOURIER transform) a DIRAC δ-function at x0.

Finally taking away the first cumulant simply moves the peak to x0 = 0.

Another important feature of a GAUSSian is that it solves the diffusion equation (re-

member that in the context of simple FOKKER-PLANCK equations),

∂tφ = D∂2
xφ− v∂xφ (1.31)

on x ∈ R, with diffusion constant D, drift velocity v and initial condition limt→0φ =

δ(x−x0). It is solved by φ = G(x−vt; x0, 2Dt). It is worth remembering that the diffusion

constant D gives rise to the variance 2Dt.

1.6 Central Limit Theorem

The CLT (central limit theorem) is of fundamental importance in all of statistics and stat-

istical mechanics. Here, it is presented in a somewhat simplified form, but more sophistic-

ated versions exist for correlated variables and with a more detailed analysis of precisely

how the PDF of sums of random variables converge to a GAUSSian.

Consider the mean ofN independent variables xi with i = 1, 2, . . . ,N, all drawn from

the same PDF which is arbitrary, apart from having vanishing mean and finite cumu-

lants2:

X ≡ 1√
N

N∑

i

xi (1.32)

Notice the somewhat unusual normalisation
√
N

−1
, which is crucial to the argument. We

will get back to that point. If the MGF of the underlying PDF3 is Ma (z), then the MGF of

the sum is (see Section 1.4.1) MX (z) = Ma

(

z/
√
N
)N

and the CGF is

CX (z) = NCa

(

z/
√
N
)

. (1.33)

The first cumulant vanishes (because the first cumulant of x vanishes), as one would

expect and the second cumulant is

d2

dz2

∣

∣

∣

∣

∣

z=0

CX (z) =
d2

dz2

∣

∣

∣

∣

∣

z=0

Ca (z) (1.34)

which means that the variance of X is the same as the variance of x itself. This is true for

any N. In general, the higher derivatives give

〈Xn〉c = N1−n/2 〈xn〉c (1.35)

2If the cumulants are not finite, a CGF might still exists, but it cannot be expanded about z = 0.
3One can obtain the PDF directly through convolutions, the outcome is the same. XXX show that.
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and because the cumulants of the underlying PDF are all finite, the cumulants of X vanish

for n > 2, N → ∞. Because only the second cumulant “survives”, the PDF of X is a

Gaussian, see Section 1.5. This is the CLT: The PDF of X converges to a GAUSSian.

Going through the “proof” above, the extra condition that the average 〈x〉 must vanish

can be lifted by shifting the xi by 〈x〉. One might be tempted to restate the CLT for simple

averages like

X ≡ 1

N

N∑

i

xi (1.36)

or maybe

X ≡
N∑

i

xi . (1.37)

However, both these random variables do not produce a GAUSSian. The first one,

(1.36), will produce a distribution that converges for N → ∞ to a DIRAC δ-peak at

〈x〉, because with that normalisation all cumulants apart from the first one will vanish,

〈Xn〉c = N1−n 〈xn〉c. The second cumulant vanishes like N−1, but all higher cumu-

lants vanish even faster and therefore the distribution of the average X will look more

and more like a Gaussian centered at 〈x〉 with ever decreasing width. This observation

is what people mean when they say that “averages converge to a Gaussian”. Strictly

speaking this is wrong, because the distribution of simple averages converges to a DIRAC

δ-function, but if one accepts to consider the leading order correction in the approach to

the DIRAC δ-function, then the distribution is Gaussian (with corrections in the higher

cumulants of order of at least N−2).

The second variation, (1.37) is more disastrous: All cumulants that do not vanish

in the underlying PDF diverge with increasing N for the PDF of X, because 〈Xn〉c =

N 〈xn〉c. Even the centre of mass (〈X〉) would run away. The observation 〈Xn〉c = N 〈xn〉c
looks like clashing with the effect (1.37) has on moments, 〈Xn〉 = Nn 〈xn〉+ . . . where the

dots contain lower order terms. So, if 〈Xn〉 ∝ Nn, how come 〈Xn〉c ∝ N, given that

cumulants can be calculated from moments? The answer is in the dots: Calculating the

nth cumulant from moments, all terms to powerNn,Nn−1,Nn−2, . . . ,N2 will cancel and

only the terms to order N will remain.

It is often said, that “the sum of random variables looks more and more GAUSSian

the more variables are added”. That, however, is true only if one rescales the observables

appropriately: If
∑N
i xi is not divided by a sufficiently high power of N, the resulting

PDF generally broadens (indicated by increasing variance) and has a centre of mass that

will generally continue to change with increasing N. Notice, that the centre of mass is

moving like N1/2 〈x〉 if 〈x〉 6= 0 in the original derivation. If, on the other hand, one

divides by too high a power, the distribution collapses to a δ-peak, the position of which

might even change with N, depending on the choice of normalisation.
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1.6.1 Stable distribution

If the PDF of the sum of two random variables is exactly identical to the PDF of the indi-

vidual PDFs (after suitable rescaling), then such a PDF is known as stable. The Gaussian

is the only stable PDF with finite variance.
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Chapter 2

Stochastic processes

Mathematicians have a proper definition of a stochastic process. However, at the present

level of rigour, it suffices to say that a stochastic process is a time-dependent observable

which depends on some random events that occur in time. It is important to keep in

mind that a stochastic process is characterised by an observable and a statement about

the process needs to be interpreted as a statement about the observable. The observable

marks a point in the sample space, the space of all possible outcomes.

2.1 A POISSON process

The POISSON process is a point process and can be visualised as an arrangement of s > 0

points on the interval, say, [0, t]. The PDF for having s points at “times” τ1, τ2, . . . , τs is

Q(τ1, τ2, . . . , τs). We impose that any permutation of the times corresponds to exactly the

same state, so when we impose normalisation, we have to discount for double counting.

This can be done either by summing over an ordered set, say τ1 6 τ2 6 . . . 6 τs, or by

double counting and then dividing by the degeneracy:

∞∑

s=0

1

s!

∫t

0
dτ1 . . . dτs Q(τ1, . . . , τs) = 1 (2.1)

By imposing that the Q factorise in the form, Q(τ1, . . . , τs) = e−νq(τ1) . . .q(τs) one ar-

rives at the POISSON process (in the stationary state, i.e. q is constant, also known as shot

noise). The normalisation then gives exp
(

−ν+
∫t

0dτq(τ)
)

= 1, so

ν =

∫t

0
dτq(τ) (2.2)

The MGF for the moments of the number of points is easy to write down, simply mul-

tiply by a factor exp (zs) inside the summation Eq. (2.1) and use the POISSON property

17
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(factorisation):

MP (z) = e
−ν

∞∑

s=0

1

s!
ezsνs = e(exp(z)−1)ν (2.3)

and the cumulant generating function is just CP (z) = (exp (z)−1)ν, so that all cumulants

greater or equal to 1 give ν. In particular, the first moment is ν, so that the MGF is

MP (z) = e
(exp(z)−1)〈s〉 = e−〈s〉

∞∑

n=0

〈s〉n
n!

enz (2.4)

On the other hand, the MGF is 〈exp (nz)〉, see Eq. (1.15) (but notice that the averaging is

now over the discrete variable s), i.e.

MP (z) =

∞∑

s=0

PP (s) e
sz (2.5)

which by comparison of coefficients means that the probability to have n events in the

interval [0, t] is given by the POISSON distribution

PP (s) = e
−〈s〉 〈s〉s

s!
(2.6)

In case of shot noise, the probability that no event takes place within a time interval

[t, t+dt] is (1−qdt). The survival probability, i.e. the probability that no event takes place

within a finite interval of length ∆t, therefore is limdt→0(1 − qdt)∆t/dt = exp (−q∆t). It

is important to realise that this is the probability for no event to occur for at least ∆t. The

probability that such a “streak” is terminated after time ∆t is the survival probability

times the probability for an event to occur in the next instance, exp (−q∆t)qdt. This

probability density is obviously normalised.
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Exercise 2: ZERNIKE’s “Weglängenparadoxon”: Say q is a constant (shot

noise) and so the probability that an event takes place is constant. Show that

the average time between two events is 1/q (ignore boundary effects, i.e. con-

sider the interval ] − ∞,∞[. Moreover, show that the average time from

any randomly chosen point in time to the preceding event is 1/q and to the

(next) following event is 1/q as well. This, however, suggests that the dis-

tance between any two events is 2/q.

Note/Solution: The probability that time α∆t passes with no event, then one event

happens (density q) and then time (1−α)∆t passes is exp (−qα∆t)q exp (−q(1 − α)∆t) =

q exp (−q∆t). Similarly one might have any number of eventsn at specific times with any

sequence of silences in between with probability qn exp (−q∆t). This is the probability

density to have a sequence of n events at certain times over a period of time ∆t. The

probability of having n events within ∆t therefore is

∫∆t

0
dt ′1

∫∆t

t ′1

dt ′2 . . .

∫∆t

t ′n−1

dt ′n q
ne−q∆t

=
1

n!

∫∆t

0
dt ′1

∫∆t

0
dt ′2 . . .

∫∆t

0
dt ′n q

ne−q∆t

=
1

n!
(q∆t)n e−q∆t (2.7)

which is, after summing over all n, obviously properly normalised. Eq. (2.7) is identical

to Eq. (2.6) with 〈s〉 = q∆t (notice the factorial1 1/n! and the additional power ∆tn com-

pared to the probability of a sequence of events at certain times, qn exp (−q∆t)). The key

insight is that all that matters is the total time of silence, not the precise amount of time

for each interval of silence. The state of each point in time (having or not having an event)

is independent.

One might conclude that the average distance from a randomly chosen point to the

next event can be derived by considering empty intervals that are terminated after time

∆t by an event and being pierced by another one at α∆t, α ∈ [0, 1]. The two events

being independent, all what counts is the quiet stretch up to its termination, which has

probability q exp (−q∆t), so that the average time between a randomly chosen point in

time and the next event is

∫ 1

0
dα

∫∞

0
d∆t (α∆t)qe−q∆t =

1

2q
. (2.8)

This procedure is deceptive, it seems to run over all possible configurations, namely all

1The 1/n! compensates for ignoring the time-order of the integrals (generally 1/n! compensates for
double-counting, as events or particle are considered as indistinguishable and configurations only to be
counted once): The first line in Eq. (2.7) means t ′1 6 t ′2 6 . . . 6 t ′n. The integrand is invariant under permuta-
tions of the t ′i, in fact, it is even independent of all t ′i. So, any arbitrary time order, say t ′4 6 t ′7 6 . . . 6 t ′2
gives the same result and the sum over all time orders gives n! times the desired result. However, the sum
over all time orders corresponds to the integral with no time order at all, the second line in Eq. (2.7).
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intervals ∆t terminated by an event and all positions α∆t of another event within this

interval. This however, turns out to be half of the average distance between any pair

of events: q exp (−q∆t) is the probability of an empty stretch occuring from some ini-

tial point, terminated by an event, but the intermediate event at α∆t has been accounted

for. The probability of two events occuring within ∆t, one at α∆t < ∆t and one at the

end is q2 exp (−q∆t). The correct normalisation for the (α,∆t) probability space gives an

additional factor ∆t (but note
∫∞

0 d∆t
∫∆t

0 d∆t ′ q2 exp (−q∆t) = 1), so correcting the ar-

guments above, Eq. (2.8), the average distance between two events across all such events

is ∫ 1

0
dα

∫∞

0
d∆t (α∆t)q2∆te−q∆t =

1

q
. (2.9)

What is actually missing in Eq. (2.8) is the probability density of the second, intermediate

event to occur, which was missed because of α being dimensionless.

More directly, the average distance from any randomly chosen point to the next event

is given by the first moment of the probability of having a quiet stretch up to time ∆t,

terminated by an event ∫∞

0
d∆t∆tqe−q∆t =

1

q
. (2.10)

This is also the distance between events, averaged over all pairs. If one wants to calculate

the average length of an empty stretch chosen randomly by picking a point at random,

then one has to take into account that the picking is biased towards longer stretches,

which are picked with a probability ∝ t exp (−q∆t). After normalising this probability,

the average length of such a stretch is

∫∞

0
d∆t∆t2q2e−q∆t = 2/q . (2.11)

2.2 Events in time

In the following, I will first derive some general properties of time-dependent PDFs.

Without getting to formal, we now consider the PDF of a series of “events” in the sense

that an observable x (could be a high-dimensional observable, describing, for example

the positions of all gas molecules in a box) has a certain value at a certain time t, i.e. the

PDF P1 (x, t). Note that this PDF is normalised with respect to x, while t parameterises

the PDF, so P1 (x, t) is to be considered as a series of PDFs, each for a specific time t.

If P1 (x, t) is independent of t, then the process is said to be stationary. The index 1 is

explained below.

One could consider the joint PDF P2 (x2, t2; x1, t1), which is the probability to observe

x1 at t1 and x2 at t2. The conditional PDF to observe x2 at t2 given that one observes x1 at

t1 is

P1|1 (x2, t2|x1, t1) =
P2 (x2, t2; x1, t1)

P1 (x1, t1)
=

P1|1 (x1, t1|x2, t2)P1 (x2, t2)

P1 (x1, t1)
. (2.12)
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This procedure can be generalised to any number of observations and the index indicates

how many observations the PDF covers and how many are conditions. To ease notation,

we will occasionally drop the index and write just n for xn, tn.

Trivially marginalising over the nuisance variable gives

P1|1 (3|1) =

∫

d2P2|1 (2, 3|1) (2.13)

and because

P2|1 (2, 3|1) =
P3 (1, 2, 3)

P1 (1)
=

P3 (1, 2, 3)

P2 (1, 2)

P2 (1, 2)

P1 (1)
= P1|2 (3|1, 2)P1|1 (2|1) (2.14)

we have

P1|1 (3|1) =

∫

d2P1|2 (3|1, 2)P1|1 (2|1) (2.15)

2.3 MARKOVian processes

The term MARKOVian is heavily overused in the physics literature. It means that the PDF

of a sequence of events (a particular observable) with t1 < t2 < t3 < . . . < tn+1 (for

n > 1) has the property

P1|n (n+ 1|1, 2, 3, . . . ,n) = P1|1 (n+ 1|n) (2.16)

i.e. for the probability of an observable to have value x1 at t1, given that it had values x2,

x3, . . . , xn earlier, only the most recent time matters (if it matters at all). The MARKOV

property can be used to compile a hierarchy. By BAYES

P2 (1, 2) = P1 (1)P1|1 (2|1) (2.17a)

P2 (1, 2, 3) = P2 (1, 2)P1|2 (3|1, 2) (2.17b)

P2 (1, 2, 3, 4) = P3 (1, 2, 3)P1|3 (4|1, 2, 3) (2.17c)

and therefore

P2 (1, 2, 3, 4) = P2 (1, 2)P1|2 (3|1, 2)P1|3 (4|1, 2, 3)

= P1 (1)P1|1 (2|1)P1|2 (3|1, 2)P1|3 (4|1, 2, 3) . (2.18)

The conditional PDFs on the RHS can be simplified using the MARKOV property

Eq. (2.16), and so:

P2 (1, 2, 3, 4) = P1 (1)P1|1 (2|1)P1|1 (3|2)P1|1 (4|3) . (2.19)

All PDFs are therefore fully determined by the initial distribution P1 (1) and the transition

probability P1|1 (). The idea is that “all that matters for later times is the state at the system



22 CHAPTER 2. STOCHASTIC PROCESSES

at any earlier point”, or rather “history does not matter” (the process does not have any

memory). By including enough details (namely all it depends on) into the observable,

every process can be made MARKOVian, which is why the statement that a process is

MARKOVian is an empty one without specifying the observable.2

conditional an additio

additional observables might very well change the conditional PDF

Note that the MARKOV property relies on some sort of temporal order. It is always

the most recent, the preceding time, that matters, P (n+ 1|1, 2, 3, . . . ,n) = P (n+ 1|n).

However, given that property, one can show that P (1|2, . . . ,n+ 1) = P (1|2), using (2.19):

P1|n (1|2, . . . ,n+ 1) =
Pn+1 (1, 2, . . . ,n+ 1)

Pn (2, . . . ,n+ 1)

=
P1 (1)P1|1 (2|1)P1|1 (3|2) . . .P1|1 (n+ 1|n)

P1 (2)P1|1 (3|2) . . .P1|1 (n+ 1|n)
=

P1 (1)P1|1 (2|1)

P1 (2)
=

P2 (1, 2)

P1 (2)
= P1|1 (1|2) ,

(2.20)

so the probability to see x1 at t1 depends only on what happens at t2 not on what happens

later; there is no preferred direction of time in the MARKOV-property.3

2.4 CHAPMAN-KOLMOGOROV equations

The MARKOV has an important integral form. Going back to Eq. (2.15), this expression

becomes

P1|1 (3|1) =

∫

d2P1|1 (3|2)P1|1 (2|1) (2.21)

2One needs to be a bit careful with the emphasis here. MARKOVian means adding knowledge about
the history does not change the conditional PDFs, such as Eq. (2.19). Starting with a non-MARKOVian pro-
cess, one can render it MARKOVian by adding additional variables, which carry the information encoded
otherwise in the history. In that sense one can translate “no history needed” into “no additional observables
needed”. However, the conditional (conditional to history) PDF of a MARKOV process might easily be a func-
tion of an additional variable, i.e. adding that observables renders the process non-MARKOVian (the trivial
example is that of a MARKOV process that combined with a non-MARKOVian process is non-MARKOVian).
So adding variables might not always improve the situation towards MARKOVian. In any case, MARKOVian
or non-MARKOVian is a feature of a process and its observable.

3One might wonder: If the time-direction in BOLTZMANN’s H-theorem does not have its origin in the
MARKOV-property (2.16), where does it come from? If there was no inverse MARKOV-property (2.20), then
one would argue that a time direction in the “increase of entropy” of theH-theorem comes from Eq. (2.16) and
that the inverse of the transition matrix P1|1 (2|1), namely P1|1 (1|2), does not obey a corresponding inverse
relation. Now we find out that it does, see Eq. (2.20), which suggests that theH-theorem works backwards for
the inverse matrix. The riddle can be resolved by showing that P1|1 (1|2) is not a MARKOVian matrix (unless
P1|1 (1|2) is effectively deterministic, in which case the entropy does not increase in the original model; just

try m =

(

0 1
1 0

)

), by having negative elements, for example. In that case, P1|1 (1|2) could not be applied to

every general “initial” distribution P1 (2), i.e. P1 (1) =
∫

d2P1 (2)P1|1 (1|2) by marginalising over 2.
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where P1|2 (3|1, 2) = P1|1 (3|2) has been used (compare to Eq. (2.15)) because of the

MARKOV property. Multiplying by P1 (1) and integrating over 1 gives

P1 (3) =

∫

d2P1|1 (3|2)P1 (2) . (2.22)

The corresponding integral of Eq. (2.15) gives the more complicated expression

P1 (3) =

∫

d1

∫

d2P1|2 (3|1, 2)P2 (1, 2) =

∫

d1

∫

d2P3 (1, 2, 3) , (2.23)

with the right hand side being a trivial marginalisation.

Eq. (2.21) is known as the CHAPMAN-KOLMOGOROV equation; it says that the PDF at

t3 given the observation at t1 is the integral over all intermediate values x2 at time t2 over

the product of the transitions from x1 to x2 and from x2 to x3. It is only that last part that

is different from Eq. (2.15): There we had to consider the transition to x3 given x2 and x1.

While Eq. (2.21) looks like the trivial statement that “one has to take an intermediate step

2 to go from 1 to 3”, it actually contains the profound statement that for the step from 2

to 3 its previous position at 1 is of no relevance.

The CHAPMAN-KOLMOGOROV equation is a consequence of the MARKOV property.4

4I don’t find it obvious to show that the converse holds.
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Chapter 3

Random walks

The random walk, described by the position x(t) in d dimensions as a function of time t,

is the prime example for a MARKOVIAN stochastic process. The position x evolves under

a certain transition probability distribution.

In the following, first a discrete version of the random walk is analysed, without mak-

ing use of the evolution equation of the PDF as given by the CHAPMAN-KOLMOGOROV

equation, Eq. (2.21). Next, we will consider those equations, allowing the position of

the random walker and the time to be continuous. Finally, the concepts of a master and

FOKKER-PLANCK equation are introduced.

3.1 Pedestrian random walk in discrete time

Instead of considering the evolution of the PDF Prw (x), we investigate the MGF of the

position. For simplicity, time and space are discretised and space is restricted to one

dimension, so x(t) = n(t) ∈ Z and t ∈ N.

Say the random walker starts at n(t = 0) = n0 and in every time step, its position in-

creases by 1 with probability p and decreases by 1 (with probability q ≡ 1−p) otherwise.

The MGF at t = 0 is just Mrw (z; t = 0) = exp (zn0). In the following time step its position

is n0 + 1 with probability p and n0 − 1 with probability q, so

Mrw (z; t = 1) = pez(n0+1) + qez(n0−1) = Mrw (z; t = 0) (pez + qe−z) (3.1)

Note that the factor (p exp (z) + q exp (−z)) can be written as

pez+qe−z = p(cosh(z)+sinh(z))+q(cosh(z)−sinh(z)) = cosh(z)+(p−q) sinh(z) (3.2)

In fact, there is a general updating rule of the MGF: The term exp (zn) indicates posi-

tion n and its coefficient is the probability of the random walker to be at n, see Eq. (1.17).

So, by multiplication by p exp (z) each exp (zn) is shifted by one to exp (z(n+ 1)), which

is the new position, and the probability is p times the probability to be there, which is

given by the coefficient. The same can be done for the “down moves” and the collective

25
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(i.e. summed) coefficient in front of exp (zn ′) indicates the new probability to be at any

n ′. In other words

Mrw (z; t+ 1) = Mrw (z; t)pez +Mrw (z; t)qe−z (3.3)

so that

Mrw (z; t) = Mrw (z; t = 0)
(

pez + qe−z
)t

= Mrw (z; t = 0) (cosh(z) + (p− q) sinh(z))t

(3.4)

(which might remind one of the one-dimensional ISING model). It is trivial to write down

the above result explicitly,

Mrw (z; t) =
t∑

i=0

piqt−i
(

t

i

)

ez(n0+i−(t−i)) (3.5)

where of course n0 + i−(t− i) = n0 + 2i− t, which means that parity conserved for even

t. Without loss of generality n0 = 0 and for even t the random walker can only be at an

even position n (the coefficients of exp (zn) then vanish for odd n). With n = 2i the PDF

is then just piqt−i
(

t
i

)

.

3.2 Evolution of the PDF using CHAPMAN-KOLMOGOROV

Next, the condition that the position is discrete is relaxed. The random walker still

evolves in discrete time and, say, Prw (x; t = 0) = δ(x − x0). According to Eq. (2.21) we

only need to specify the evolution “matrix”1, P1|1 (2|1). If that expression depends only

on the time difference t2 − t1, the MARKOV process is said to be homogeneous. Some-

times the term “stationary” is used as well, although it should rather be reserved for time

independent PDFs.

Say the transition matrix is given by

P1|1 (x2, t2|x1, t1) =
1

√

4πD(t2 − t1)
e
−

(x2−x1)
2

4D(t2−t1) , (3.6)

which is known as the all-important WIENER process. Because the initial condition is

specified as a δ-function, not much work is needed to find

Prw (x, t) =
1√

4πDt
e−

(x−x0)
2

4Dt . (3.7)

So that is trivial, but only because P1|1 (x2, t2|x1, t1) was given for all times t1 < t2. In

the previous example, only a single step t2 − t1 = 1 was specified. Assuming some

1I will call this object a transition matrix in the following, because considering
∫

d2 as a sum over all
elements renders Eq. (2.21) a matrix equation.
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sort of “conservation of effort”, one finds the real work hidden in the statement that

P1|1 (x2, t2|x1, t1) given in Eq. (3.6) obeys the CHAPMAN-KOLMOGOROV equation.

Exercise 3: Show that Eq. (3.6) obeys the CHAPMAN-KOLMOGOROV equa-

tion Eq. (2.21).

3.3 Master equation approach

The CHAPMAN-KOLMOGOROV equation is an integral equation that defines how the PDF

of the process evolves in time. If the transition matrix P1|1 (x2, t2|x1, t1) is given for all

times, then deriving the distribution for any time is usually straight forward. In Sec-

tion 3.1 we dealt with the situation that the evolution was only known for a single time

step.

In continuum time this corresponds to knowing the transition rates at any moment

in time. We rewrite Eq. (2.21) for homogeneous processes with T(x2|x1; t2 − t1) =

P1|1 (x2, t2|x1, t1):

T(x3|x1; τ+ τ ′) =

∫

dx2 T(x3|x2; τ ′)T(x2|x1; τ) (3.8)

where τ = t2 − t1 and τ ′ = t3 − t2. Differentiating with respect to τ ′ and taking the limit

τ ′ → 0 gives

∂τT(x3|x1; τ) =

∫

dx2

(

− a0(x2)δ(x3 − x2) +W(x3|x2)
)

T(x2|x1; τ)

=

∫

dx2W(x3|x2)T(x2|x1; τ) − a0(x3)T(x3|x1; τ) (3.9)

where limτ→0 ∂τT(x3|x2; τ) = −a0(x2)δ(x3−x2)+W(x3|x2) has been used, whereW(x3|x2)

is thought to not explicitly depend on time (we are dealing with a homogeneous process

after all). The choice of that particular form is motivated by the following expansion for

small times τ:

T(x3|x2; τ) = (1 − a0(x2)τ)δ(x3 − x2) + τW(x3|x2) + O(τ2) (3.10)

The δ-function is there to account for the rate with which the system remains unchanged.

Because it must evolve into something or stay the same, the integral over x3 of T(x3|x2; τ)

must be 1 for all τ. Imposing this property order by order in τ and given that the leading

order is
∫

dx3 δ(x3 − x2) = 1, means that

a0(x2) =

∫

dx3W(x3|x2) (3.11)

and therefore produces the so-called master equation

∂τT(x3|x1; τ) =

∫

dx2 (W(x3|x2)T(x2|x1; τ) −W(x2|x3)T(x3|x1; τ)) , (3.12)
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where we used a0(x3) =
∫

dx2W(x2|x3) (note that W is time-independent and it does

not matter whether x2 is associated with an earlier time that x3; both are just dummy

variables). If the PDF is known at the fixed time t1, one can multiply by P1 (x1, t1) and

integrate over 1:

∂τP1 (x3, τ) =

∫

dx2 (W(x3|x2)P1 (x2, τ) −W(x2|x3)P1 (x3, τ)) , (3.13)

which is slightly misleading, suggesting that the master equation is only about determin-

ing the PDF at later times given the PDF at an initial time t1. Instead the master equation

is an integro-differential equation for the transition probabilities given any initial state.

For discrete states n, the last expression has a particularly appealing form. Write

Pn (t) for the probability to be in n at time t and one has

∂tPn (t) =
∑

n ′

W(n|n ′)Pn ′ (t) −W(n ′|n)Pn (t) (3.14)

which are in fact just gain and loss terms for the probability to be in state n. Notice that

W(n|n) cancels. Defining the matrix W as

Wnn ′ =W(n|n ′) − δnn ′

∑

n ′′

W(n ′′|n) (3.15)

one can rewrite Eq. (3.14) as

∂tp(t) = Wnn ′p(t) (3.16)

where the vector p(t) has entries according to Pn (t). The formal solution of this expres-

sion is just p(t) = exp (tWnn ′)p(0).

3.4 FOKKER-PLANCK equation

The FOKKER-PLANCK equation is a particular type of master equation. As long as one

is not concerned with discrete states, the above general master equation Eq. (3.12) and

the expansion it is based on Eq. (3.10) might look slightly discomforting. For small time

differences, the transition matrix should and indeed does collapse to a δ-function. But for

finite time W mixes in and one might wonder what that object actually describes. It is

transition rate, so that T is a probability again, but if the transitions take place at that rate

in every instant, how come the transition ever collapses to a δ-function.

The answer to this is of course the time span τwhich must be multiplied on the trans-

ition rate. What is, however, really unsettling is the fact that Eq. (3.10) states that for short

times, the system might remain at exactly the same state with finite probability. How can

that be possible in a stochastic process, supposedly operating at every instant in time?

It cannot and in fact W(x3|x2) will cancel the term a0(x2)δ(x3 − x2) (giving rise to the

negative term in Eq. (3.12)) as we will see in the following, Eq. (3.19).
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In the following we write the transition matrix W(x ′|x) as w(x,−r) with r = x − x ′,

which gives for Eq. (3.13)

∂τP1 (x3, τ) =

∫

dx2 (w(x2, x3 − x2)P1 (x2, τ) −w(x3, x2 − x3)P1 (x3, τ))

=

∫

dr (w(x3 − r, r)P1 (x3 − r, τ) −w(x3,−r)P1 (x3, τ)) (3.17)

where r = x3 − x2. Next we assume that w(x, r) is sharply peaked around r = 0 and

varies only slowly in x and that P1 (x, τ) is also varying slowly in x. Expanding w(x3 −

r, r)P1 (x3 − r, τ) about r = 0 produces

w(x3 − r, r)P1 (x3 − r, τ) = w(x3, r)P1 (x3, τ) − r∂x (w(x3, r)P1 (x3, τ))

+
1

2
r2∂2
x (w(x3, r)P1 (x3, τ)) + O(r3) (3.18)

and keeping only terms up to second order in r then gives

∂τP1 (x3, τ) =

∫

dr (w(x3, r)P1 (x3, τ) − r∂x (w(x3, r)P1 (x3, τ))

+
1

2
r2∂2
x (w(x3, r)P1 (x3, τ)) −w(x3,−r)P1 (x3, τ)

)

(3.19)

The first and the last term cancel and the integral runs over r, so that the factors P1 (x3, τ)

can be taken outside the integrals. Defining

A(x) =

∫

dr rw(x, r) (3.20a)

B(x) =

∫

dr r2w(x, r) (3.20b)

which are, effectively, the first and second moments of the displacement r we arrive at

the FOKKER-PLANCK equation:

∂τP1 (x, τ) = −∂x (A(x)P1 (x, τ)) +
1

2
∂2
x (B(x)P1 (x, τ)) , (3.21)

which is an equation of motion for the entire PDF of the observable, rather than for the

observable itself.

The two unknown functions can be related to the time-evolution of the first and the

second cumulant. In particular, we note that
∫

dx ∂τP1 (x, τ) = 0 as surface terms vanish

and

∂t 〈x〉 = ∂τ
∫

dx xP1 (x, τ) = −

∫

dx x∂x (A(x)P1 (x, τ)) +
1

2

∫

dx x∂2
x (B(x)P1 (x, τ)) (3.22)

where the first integral gives
∫

dxA(x)P1 (x, τ) = 〈A(x)〉 after an integration by parts and
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the second
∫

dx ∂x (B(x)P1 (x, τ)) = 0. Therefore

∂t 〈x〉 = 〈A(x)〉 (3.23)



Chapter 4

LANGEVIN equations

It is generally accepted that equilibrium thermodynamics is “solved”, while non-

equilibrium thermodynamics lacks a central formalism à la MAXWELL-BOLTZMANN. To

state it so strongly is an exaggeration: Equilibrium thermodynamics still contains many

puzzles and the MAXWELL-BOLTZMANN formalism may not always be ideal to address

certain issues. While there might be reason to be a bit more pessimistic about the state of

affairs in equilibrium, there are certainly many reasons to be a bit more optimistic about

non-equilibrium. Many different approaches exist in parallel and it is not always easy to

translate between them or formulate the problem in a way that suits any of the methods.

But in principle, methods are available ranging from LANGEVIN equations over mas-

ter equations and FOKKER-PLANCK equations to the JANSSEN-DE DOMINICIS response

functional. The following chapters discuss some of these methods.

LANGEVIN equations are stochastic partial differential equations which are in wide

use within the physics community. They suffer from a number of mathematical shortcom-

ings, so that there are less popular among mathematicians, who generally prefer integral

formulations of the problems. However, in many physical situations, the LANGEVIN

equation is the most direct way to describe the phenomenon.

4.1 Random walk

A LANGEVIN equation is an equation of motion, usually first order in time. It describes

the time evolution of an observable, rather than the time evolution of a PDF of that ob-

servable. The observable can be a function (for example an interface that evolves in time),

but for simplicity we consider the scalar situation of a particle under the influence of ran-

dom displacements, also known as BROWNian motion. If the position at time t is x(t)
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then its temporal evolution is given by the LANGEVIN equation1

ẋ(t) = η(t) (4.1)

where η(t) is a noise and therefore a rather peculiar mathematical object. To define it, 〈·〉
is interpreted as averaging over all realisations of that noise, and so the noise-correlator

is given by
〈

η(t)η(t ′)
〉

= 2Γ 2δ(t− t ′) . (4.2)

Since the FOURIER transform of that correlator is a constant, i.e. every mode k is present

with equal strength, it is known as white noise. In many applications, it is completely

sufficient to specify only the two point correlator of the noise, rather than its full distri-

bution.

Notice that 2Γ 2 is the amplitude of the δ-function; the noise has infinite variance. For

many purposes it is enough to specify only the correlator, however, the first moment is

virtually always set to 0, while higher correlation functions are usually fixed by declar-

ing that the noise is GAUSSian so that higher correlations are given by WICK’s theorem.2

While any finite integral over η is like the sum over infinitely many random variables

and therefore subject to the central limit theorem (i.e. the sum is essentially GAUSSian),

the noise itself does not need to be GAUSSian, P ([η(t)]) ∝ exp
(

− 1
4Γ 2

∫
dt η(t)2

)

(see

Eq. (5.15)). As a matter of convenience the probability of η at any point should be

an exponential, so that the product measure (different point in time are uncorrelated)

is an exponential of the sum or rather an integral over different points. For example,

P ([η(t)]) ∝ exp
(

− 1
4Γ 2

∫
dt η(t)4

)

works as well, but correlators are now (without WICK)

very difficult to calculate. It is worth noting that the probability density of a particu-

lar realisation of GAUSSian noise depends on the total square displacement, not on its

sum or integral. The latter is a sum of independent random variables and therefore al-

ways GAUSSian (even when based on η(t)4). In most physical situations, coarse graining

amounts to averaging over the noise, which renders any noise GAUSSian.

The position x(t) in the equation of motion Eq. (4.1) is to be considered a functional

of η(t). In fact, we can simply integrate3 and find

x(t) = x0 +

∫t

t0

dt ′ η(t ′) . (4.3)

1Notice that we traded the deterministic equation of motion for the PDF against a stochastic equation for
the observable.

2Is it possible to show that a process described by the LANGEVIN equation is non-MARKOVian if the noise
is not δ-correlated? Adding observables is not allowed (such as using an O-U process to generate correlated
noise and use that to drive another O-U process, and then include both process in a joint observable, which
of course would still be MARKOVian, even with the second being subject to correlated noise). Yes! See Nico
van Kampen, Braz. J. Phys, 28, 90 (1998).

3Very often it is not that simple and the actual rules of evaluation of the right hand side, in particular
if there are terms in x(t) whose instantaneous value depends on the noise at the same instant in time, are
crucial.



4.1. RANDOM WALK 33

implying x0 = x(t0) Although the entire history of x(t) is fixed given η(t) and its value at

any point in time, one usually sets t0 = 0 and considers only t > 0. The mean position is

〈x(t)〉 = 〈x0〉+
〈∫t

t0

dt ′ η(t ′)

〉

= x0 (4.4)

where we have used 〈η(t ′)〉 = 0. The correlation function 〈x(t1)x(t2)〉 now is

〈x(t1)x(t2)〉 = x2
0 +

〈∫t1

t0

dt ′1

∫t2

t0

dt ′2 η(t
′
1)η(t

′
2)

〉

= x2
0 +

∫t1

t0

dt ′1

∫t2

t0

dt ′2
〈

η(t ′1)η(t
′
2)
〉

= x2
0 +

∫t1

t0

dt ′1

∫t2

t0

dt ′2 2Γ 2δ(t ′1 − t
′
2) (4.5)

To evaluate this integral we specify t2 > t1, so that the resulting δ-function can be integ-

rated over t ′2 and is guaranteed to contribute for all t ′1. Performing the integration the

other way around is more complicated because for all t ′2 > t1 the integral over t ′1 would

not contribute. We therefore have

〈x(t1)x(t2)〉 = x2
0 + 2Γ 2 min(t1, t2) (4.6)

Choosing t1 = t2 we note that the variance increases linearly in time,

〈

x(t)2
〉

c
= 2Γ 2t . (4.7)

The combination

〈x(t1)x(t2)〉− 〈x(t1)〉 〈x(t2)〉 = 〈(x(t1) − 〈x(t1)〉) (x(t2) − 〈x(t2)〉)〉 (4.8)

is known as the two-time correlation function, sometimes written just as 〈x(t1)x(t2)〉c
(notice the subscript c). In the present case

〈x(t1)x(t2)〉− 〈x(t1)〉 〈x(t2)〉 = 2Γ 2 min(t1, t2) (4.9)

so that the diffusion constant of the random walk is given by D = Γ 2 (see the remark at

the end of Section 1.5.

Exercise 4: Verify Eq. (4.8).

All higher cumulants of the noise vanish (because the noise is GAUSSian) and con-

sequently all higher cumulants of x(t) vanish as well. The GAUSSian noise therefore gen-

erates a GAUSSIANian position x(t), but its variance is linearly increasing in time. This

is the same feature as in the central limit theorem: The observable y(t) = x(t)/
√
t has

a constant variance equal to that of the noise, i.e. rescaling space by
√
t keeps a random

walker confined.
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4.2 ORNSTEIN-UHLENBECK process

The second process to be discussed in terms of a LANGEVIN equation is of fundamental

importance: It is the only MARKOVian, stationary, GAUSSian process. Or to put it more

clearly: Every process, which is MARKOVian, stationary and GAUSSian is (by DOBB’s

theorem) the ORNSTEIN-UHLENBECK process.

Its stationarity is somehow “enforced” by specifying the right initial distribution. The

process converges to the same PDF for any initial condition. By picking this asymptotic

PDF as the initial PDF of the process implies that it will not change over time.

The LANGEVIN equation for the ORNSTEIN-UHLENBECK process is (with any initial

condition)

ẋ(t) = η(t) − γx(t) (4.10)

The new term compared Eq. (4.1) is the “pull-back” term −γx(t). Whenever x(t) strays

away too far from the origin, its average velocity points back to the origin if γ > 0,

because ˙〈x〉(t) = −γ 〈x〉 (t), so that

〈x〉 (t; x0) = x0e
−γt (4.11)

with x0 = x(t = 0) fixed.4 The complete ORNSTEIN-UHLENBECK process includes a PDF

of those,

POU (x0) =

√

γ

2πΓ 2
e
−
x2

0γ

2Γ2 (4.12)

and by including that into the averaging one has immediately (by symmetry) 〈x〉 (t) = 0.

To calculate higher moments, it is worthwhile writing down the formal solution of

Eq. (4.10):

x(t; x0) = x0e
−γt +

∫t

0
dt ′ η(t ′)e−γ(t−t

′) (4.13)

Taking the ensemble average reproduces Eq. (4.11), while the correlation function be-

comes

〈x(t1)x(t2)〉 (x0) = x
2
0e

−γ(t1+t2)+2Γ 2

∫t1

0
dt ′1

∫t2

0
dt ′2 δ(t

′
1−t

′
2)e

−γ((t1+t2)−(t ′1+t
′
2)) (4.14)

We recognise the first term on the right as x2
0 exp (−γ(t1 + t2)) = 〈x〉 (t1; x0) 〈x〉 (t2; x0).

Again, we choose t2 > t1, so that the integration over t ′2 can be done immediately,

leaving essentially only the integral
∫t1

0 dt ′1 exp
(

2γt ′1
)

= (2γ)−1(exp (2γt1)−1) and there-

4Notice the notation: The parameters (t; x0) are outside the average, indicating that the average itself
depends on it. The time t could obviously also stand inside the average, because averaging over the position
at a certain time, is just the same as the position as a function of time. But we will sometimes average over
x0 as well, so we want to distinguish between the situation where x0 is a parameter (standing outside) and
being averaged over as well (inside). Of course, the meaning of 〈·〉 averaging over x0 or not actually changes
in the two situations.
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fore

〈x(t1)x(t2)〉 (x0) = x
2
0e

−γ(t1+t2) +
Γ 2

γ

(

e−γ(t2−t1) − e−γ(t2+t1)
)

(4.15)

so that the two point correlation function for fixed x0 becomes

〈x(t1)x(t2)〉 (x0) − 〈x〉 (t1; x0) 〈x〉 (t2; x0) =
Γ 2

γ

(

e−γ(t2−t1) − e−γ(t2+t1)
)

(4.16)

Choosing again t1 = t2 = t gives a variance of the position that increases exponentially

slowly in time (compare to Eq. (4.7)), converging to Γ 2/γ:

〈x(t; x0)x(t; x0)〉− 〈x〉 (t; x0) 〈x〉 (t; x0) =
Γ 2

γ

(

1 − e−2γt
)

(4.17)

Note: If we take the limit γ → 0 of this expression or more generally Eq. (4.16), then

we should obtain the two-point correlation function of the random walker studied in

Section 4.1. In fact

lim
γ→0

Γ 2

γ

(

e−γ(t2−t1) − e−γ(t2+t1)
)

= 2Γ 2t1 (4.18)

exactly the same as Eq. (4.9) with t1 6 t2.

Averaging over the initial condition is a bit dangerous:5 Wherever there is a 〈·〉,
we could just integrate over x0 weighted by POU (x0). That way, 〈·〉 includes the aver-

aging over x0. However, when we replaced x2
0 exp (−γ(t1 + t2)) we used 〈x〉 (t; x0) =

x0 exp (−γt). When averaging over x0 we have 〈x〉 (t; x0) = 0 and we cannot make that

substitution. So, for the “real ORNSTEIN-UHLENBECK process” (including the averaging

over x0), we have 〈x〉 (t) = 0 and what remains is the average over Eq. (4.15):

〈x(t1)x(t2)〉− 〈x〉 (t1) 〈x〉 (t1) =
∫

dx0 POU (x0)

{

x2
0e

−γ(t1+t2) +
Γ 2

γ

(

e−γ(t2−t1) − e−γ(t2+t1)
)

}

(4.19)

The only term that is actually affected by that averaging is the first term on the right,

proportional to x2
0, but from Eq. (4.12) we know it contributes Γ 2γ−1, so the terms in

exp (−γ(t1 + t2)) cancel and all what is left of the correlation function is

〈x(t1)x(t2)〉− 〈x〉 (t1) 〈x〉 (t1) =
Γ 2

γ
e−γ(t2−t1) (4.20)

which is in fact stationary, because it depends only on the relative time, not the absolute.

The same applies to higher moments and similar to Section 4.1, all higher cumulants van-

5The initial distribution is chosen to be the asymptotic distribution, so the correlation function should
depend only on time differences after taking the average over x0. Yet, there is no way to get rid of the
exp (−γ(t2 + t1)) in Eq. (4.16) by averaging over x0. The problem is that we have subtracted the average
position x0 exp (−γt) before we have taken the average over x0. If we average naı̈vely over Eq. (4.16) using
POU (x0) we would effectively confuse the average of the square of x0 with the square of its average.
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ish, meaning that the PDF of x(t) is GAUSSian. However, this time the variance remains

constant, Γ 2/γ, and the average vanishes – in fact, the PDF of x(t) equals that of x0 for all

times.

An interesting question to follow up is how LANGEVIN equations with GAUSSian,

additive noise can ever produce something non-GAUSSian. The only way to break free

from the central limit theorem is through algebraic correlations, which have to be gener-

ated in the presence of the noise by the propagator (in the PDE sense, the solution of the

LANGEVIN equation without noise, rather than in the field theoretic sense, the solution

of the linear part of the LANGEVIN equation).

It will turn out that purely relaxational LANGEVIN equations (with the RHS derived

from a HAMILTONian) have a stationary distribution given by the HAMILTONian. These

models are “out of equilibrium”, not “far from equilibrium”. As long asφ is only time de-

pendent (mean field theorey of model A, for instance), the resulting PDF can be read off

from the HAMILTONian immediately. By choosing non-linear terms in the LANGEVIN

equation, the PDF can be made arbitrarily non-GAUSSIAN. To stress that, such non-

GAUSSIAN behaviour derived from a GAUSSIAN noise can only be produced by algebraic

correlations.6

If φ is space dependent and there is interaction in space (as in model A), then the

coupling γ needs to be tuned to a very special value (corresponding to the critical tem-

perature), not necessarily to 0 in order to produce non-GAUSSIAN behaviour in the large

time and space limit. Again, the stationary PDF is given by the HAMILTONian, but it is

not immediately obvious what long range and time behaviour this HAMILTONian pro-

duces. In fact, that latter question is subject of static critical phenomena.

6It would be wonderful to find an example for that, an exact solution or so.



Chapter 5

Critical dynamics

Dynamical, i.e. time-dependent behaviour can be obtained in equilibrium (e.g. the two

point correlation function in the ideal gas), in non-equilibrium but near equilibrium (usu-

ally meaning relaxation to the equilibrium, e.g. model A, maybe best termed “out of equi-

librium” or “near equilibrium”) or far from equilibrium where a constant flux prevents

detailed balance. In this section, some general features of stochastic dynamics and dy-

namic scaling are presented. Critical dynamics generally are some time-dependent phe-

nomena that display critical behaviour, i.e. algebraic decay of correlations at a critical

point. The most common and probably the most convenient form to describe these sys-

tems is in terms of LANGEVIN equations, as introduced earlier.

Instead of considering the stationary state, one can define an “evolution rule” and

ask how the system’s features change in time, for example, recover after a change in the

external field. The time is a new parameter and enters the above scaling assumption just

like any other parameter

f(τ,h, t) = λ−df(τλyt ,hλyh , tλ−z) (5.1)

Differentiating with respect to h and evaluating at h = 0 and τ = 0 gives

m(0, 0, t) = λyh−dm(0, 0, tλ−z) (5.2)

where we have used ∂hf = −m. Using yh − d = −β/ν and tλ−z = 1 we have

m(0, 0, t) = t−
β
νzm(0, 0, 1) (5.3)

This is a typical example for dynamical scaling behaviour: At the critical point, after hav-

ing taken the thermodynamic limit, the system relaxes algebraically. Eq. (5.3) can be used

to determine critical exponents. The system is prepared in a configuration away from

equilibrium and over time it relaxes back to it. The only subtlety is that the single con-

figuration the system is prepared into says very little about whether or not the system is

in equilibrium. One has to repeat the procedure over and over with initial configurations

37
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the ensemble of which is not the equilibrium ensemble.

The critical exponent z depends on the choice of the dynamics. In ferromagnetic mod-

els, GLAUBER dynamics is a typical choice. The exponent z is the “anomalous dimension”

of the time and so the correlation time when simulating a ferromagnetic model diverges

like Lz at the critical point. In order to determine good estimates of static quantities, cor-

relations should be kept to a minimum and therefore evolution strategies are employed

which have a dynamical exponent z close to 0. Cluster algorithms (SWENDSEN-WANG or

WOLFF) perform particularly well in that respect.

In Section 5.4 various variations of the dynamics for φ4 theories, such as the ISING

model will be discussed, each characterised by its particular dynamical exponent.

5.1 From HAMILTONian to LANGEVIN equation and back

A priori a model studied in equilibrium critical phenomena does not have a dynamical

updating rule associated with it. Say we are concerned with φ4 theory, i.e. the Hamilto-

nian is

H[φ] =

∫

ddx
1

2
(∇φ)2

+
1

2
rφ2 +

u

4!
φ4 + h(x)φ(x) (5.4)

which is a functional of the order parameter field φ(x). The external, local field is repres-

ented by h(x). A naı̈ve relaxation of that field minimises that Hamiltonian,

φ̇ = −D
δH

δφ
(5.5)

where δHδφ is the functional derivative of the HAMILTONian with respect to the field φ

andD is a coefficient effectively setting the time scale, the relaxation rate. If φminimises

the HAMILTONian, then a positive perturbation will lead to a positive “slope”, so that the

response is negative and vice versa. For the φ4 HAMILTONian the equation of motion

therefore is

φ̇ = D(∇2φ− rφ+
u

6
φ3 + h) (5.6)

where we have used

δ

δφ(x ′)
(∇φ(x))2

= −2∇2φ(x)δ(x − x ′) . (5.7)

Eq. (5.5) describes a deterministic relaxation. To account for the noise present in a

thermodynamic system due to the heat-bath (one might wonder where the noise is com-

ing from in the bath), we add a noise term η(x, t) and arrive at

φ̇(x, t) = D
(

∇2φ(x, t) − rφ(x, t) +
u

6
φ(x, t)3 + h(x, t)

)

+ η(x, t) (5.8)
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This time, the noise has correlator

〈

η(x, t)η(x ′, t ′)
〉

= 2Γ 2δ(t− t ′)δ(x − x ′) , (5.9)

compare to Eq. (4.2).

Was it not for the non-linear term (u/6)φ(x, t)3, the formal solution of this LANGEVIN

could be written down using a GREEN function approach.

Eq. (5.8) is also known as model A or GLAUBER dynamics and will be discussed in

a wider context in Section 5.4. For the remainder of the present section, we discuss the

features of LANGEVIN equations constructed as a relaxation process towards equilibrium

φ̇(x, t) = −D
δH([ψ])

δψ(x)

∣

∣

∣

∣

φ(x)=φ(x,t)

+ η(x, t) (5.10)

Note that the HAMILTONian is a functional of a field ψ(x) that depends on space only,

but evaluated for one that is time-dependent as well. That is important, because, for

example, a harmonic potential would be represented by
∫

ddx ′ψ(x ′)2, not containing any

time. Replacing ψ(x) by φ(x, t) and differentiating functionally with respect to the latter

gives
δ

δφ(x, t)

∫

ddx ′φ(x ′, t ′)2 = 2φ(x, t)δ(t− t ′) (5.11)

with an undesired extra factor δ(t− t ′) on the right.

Exercise 5: Find the formal solution of Eq. (5.8) with u = 0 and h ≡ 0, and

determine the correlation function 〈φ(x, t)φ(x ′, t ′)〉− 〈φ(x, t)〉 〈φ(x ′, t ′)〉 in

the limit of large times t, t ′ as a function of the difference t− t ′ > 0. Consider,

in particular, r = 0.

5.2 The PDF of η

In order to make further progress, we need to specify the PDF of η. We know that it is

GAUSSian, has vanishing mean and a δ-correlator. To get started, we discretise space, so

that the DIRAC δ function turn into a KRONECKER divided by the time or volume element.

To ease notation, we go through the procedure only for the noise in time, Eq. (4.2), which

now reads
〈

ηiηj
〉

= 2Γ 2δij∆t
−1 (5.12)

where ηi means η(ti) at the discrete time ti, which ticks in units of ∆t. With the ηi

mutually independent and having vanishing mean, a product measure seems suitable,

and individual ηi are distributed according to

Pi (η) =

√

∆t

4πΓ 2
e
−η

2∆t

4Γ2 (5.13)
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and so

P (η1, . . . ,ηn) =

(

∆t

4πΓ 2

)n/2

e
−
∆t

∑n
i
η2
i

4Γ2 (5.14)

In order to take the continuum limit, we have to drop the normalisation,

P ([η(t)]) ∝ e−
1

4Γ2

∫
dtη(t)2

. (5.15)

Any average ober the noise can now be written as

〈·〉 =
∫

DηP ([η(t)]) · (5.16)

where Dη stands for
∏

dηi if time is discretised again. The moment generating function

of the noise is
〈

exp
(∫

dt ηh(t)
)〉

with h(t) a function of time. Completing the square gives

−
1

4Γ 2
η(t)2 + η(t)h(t) = −

1

4Γ 2

(

η(t) − 2Γ 2h(t)
)2

+ Γ 2h(t)2 (5.17)

so that
〈

exp
(∫

dt ηh(t)
)〉

= exp
(∫

dt Γ 2h(t)2
)

. Taking the logarithm and differentiating

twice (functionally) with respect to h(t) gives the correlator

δ2

δh(t)δh(t ′)
ln

〈

e
∫

dtηh(t)
〉

=
δ2

δh(t)δh(t ′)

∫

dt Γ 2h(t)2 = 2Γ 2δ(t− t ′) (5.18)

reproducing the correlator Eq. (4.2).

The procedure can be generalised for η that is time and space dependent with

P ([η(x, t)]) ∝ e−
1

4Γ2

∫
dtddxη(x,t)2

(5.19)

Given a LANGEVIN equation of the form ∂tφ(x, t) = −F[φ] + η(x, t) one can now ask

for average of functionals of φ(x, t) which are solutions of the LANGEVIN equation, i.e.

themselves functionals of the noise. Because the determinant of the JACOBian Dφ/Dη

turns out to be unity1 one then has

〈·〉 =
∫

Dφ exp

(

−
1

4Γ 2

∫

dtddx [∂tφ(x, t) − F[φ]]2
)

· (5.20)

where we have used η(x, t) = ∂tφ(x, t)−F[φ]. Analysing Eq. (5.10) along these lines, one

chooses

−F[φ(x, t)] = D
δH([ψ])

δψ(x)

∣

∣

∣

∣

φ(x)=φ(x,t)

= DH ′([φ(x, t)]) (5.21)

1Rather, it can be chosen to be unity. The choice comes from the fact that LANGEVIN equations with a
noise that has infinite variance actually make little sense, and to render them mathematically well-defined
one has to make a choice about their interpretation.
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and arrives at the ONSAGER-MACHLUP functional

〈·〉 =
∫

Dφ exp

(

−
1

4Γ 2

∫

dt ′ddx ′
[

∂tφ(x
′, t ′) +DH ′([φ(x ′, t ′)])

]2
)

· (5.22)

5.3 A FOKKER-PLANCK equation approach

From Eq. (5.22) one can derive a FOKKER-PLANCK equation (partly from “Quantum

Field Theory and Critical Phenomena” by ZINN-JUSTIN). To simplify the derivation, we

will first derive the FOKKER-PLANCK equation for a space independent field φ(t). The

LANGEVIN equation to be considered is

φ̇(t) = −D ∂ψ
∣

∣

φ(t)
H(ψ) + η(t) , (5.23)

see Eq. (5.10). To ease notation, we write ∂ψ
∣

∣

φ(t)
H(ψ) = H ′(φ).

The probability that φ has the value φ0 at time t is

Pφ (φ0; t) = 〈δ(φ(t) − φ0)〉 (5.24)

To find the time evolution of Pφ (φ0; t), we differentiate with respect to t, which gives

∂tPφ (φ0; t) = ∂t 〈δ(φ(t) − φ0)〉 (5.25a)

=

〈

φ̇(t)
∂

∂φ
δ(φ(t) − φ0)

〉

(5.25b)

If 〈·〉 runs over η, the variable φ(t) is, via the LANGEVIN equation, after integration a

functional of η. In that case, the LANGEVIN equation is implied whenever φ(t) is con-

sidered. If, on the other hand, the path integral runs over φ, one can at any time intro-

duce a new dummy variable η(t) = ∂tφ(x) +DH ′([φ(x)]), which produces, as we know,

a JACOBian with determinant 1. However we look at it, we can always replace φ̇(t) in

Eq. (5.25b) by the LANGEVIN equation.

The term ∂φδ(φ − φ0) can be replaced by −∂φ0
δ(φ − φ0), which can be taken out of

the average, so that

∂tPφ (φ0; t) = −∂φ0

〈(

−DH ′(φ(t)) + η(t)
)

δ(φ(t) − φ0)
〉

(5.26a)

Because of the δ-function H ′ can be equally evaluated at φ0 and taken out of the average

as well,

〈

−DH ′(φ(t))δ(φ(t) − φ0)
〉

= −DH ′(φ0) 〈δ(φ(t) − φ0)〉 = −DH ′(φ0)Pφ (φ0; t) . (5.27)

The other term of Eq. (5.26) to be considered is 〈η(t)δ(φ(t) − φ0)〉. Writing the average
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again as a path integral over η, we note that

∫

Dη
δ

δη(t)
exp

(

−
1

4Γ 2

∫

dt ′ η(t ′)2

)

=

∫

Dη

(

−
1

2Γ 2
η(t)

)

exp

(

−
1

4Γ 2

∫

dt ′ η(t ′)2

)

(5.28)

Using a functional integration by parts, one therefore obtains

〈η(t)δ(φ(t) − φ0)〉 = −2Γ 2

∫

Dηδ(φ(t) − φ0)
δ

δη(t)
exp

(

−
1

4Γ 2

∫

dt ′ η(t ′)2

)

= 2Γ 2

∫

Dη exp

(

−
1

4Γ 2

∫

dt ′ η(t ′)2

)

δ

δη(t)
δ(φ(t) − φ0)

= 2Γ 2

〈

δ

δη(t)
δ(φ(t) − φ0)

〉

(5.29)

As mentioned above, φ(t) is a functional of η (more precisely, an integral) and one can

choose
δ

δη(t)
φ(t) =

1

2
(5.30)

so that
〈

δ

δη(t)
δ(φ(t) − φ0)

〉

= −
1

2
∂φ0

〈δ(φ(t) − φ0)〉 = −
1

2
∂φ0

Pφ (φ0; t) (5.31)

again turning the derivative with respect to φ(t) of the DIRAC δ function into a negative

one with respect to φ0. Collecting all terms, one has the FOKKER-PLANCK equation

∂tPφ (φ0; t) = ∂φ0

(

DH ′(φ0)Pφ (φ0; t)
)

+ Γ 2∂2
φ0

Pφ (φ0; t) . (5.32)

In the stationary state ∂tPφ (φ0; t) = 0 and therefore

∂φ0

(

DH ′(φ0)Pφ (φ0; t) + Γ 2∂φ0
Pφ (φ0; t)

)

= 0 (5.33)

one solution2 of which is

Pφ;stat (φ) ∝ e−
D

Γ2 .H(φ) (5.34)

This result can be extended to space dependent order parameters, so that the station-

ary PDF becomes the BOLTZMANN-factor

Pφ;stat ([φ(x)]) ∝ e−
D

Γ2 H([φ]) , (5.35)

where D/Γ 2 can be identified with the inverse temperature 1/(kBT).

2Apparently DH ′(φ0)Pφ (φ0; t) + Γ 2∂φ0
Pφ (φ0; t) = C1 and the general solution of Pφ (φ0; t) ′ = C1 −

D
Γ 2 H

′(φ0)Pφ (φ0; t) is

Pφ (φ0; t) = exp
(

−D
Γ 2 H(φ0)

)

(

C2 + C1

∫φ0

0 dφ exp
(

D
Γ 2 H(φ)

)

)
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Exercise 6: Find 〈φ(x, t)φ(x ′, t ′)〉 − 〈φ(x, t)〉 〈φ(x ′, t ′)〉 in the stationary

state, using Eq. (5.35) with the Hamiltonian Eq. (5.4) with u = 0, h ≡ 0 and

t = t ′ (as we consider the stationary state, t cannot be different from t ′ —

there is no time left). Compare the result to the previous exercise.

5.4 The HOHENBERG-HALPERIN models

The way we constructed the relaxational dynamics (5.5) does not prescribe the way the

noise enters. That choice was made later, Eq. (5.8). HOHENBERG and HALPERIN intro-

duced (RMP 1977) a now well-established classification of models, which differ in the

way the noise is implemented as well as in the general physical features.

One model has been mentioned already, namely model A, also known as GLAUBER

dynamics. It is defined by the Langevin equation

φ̇(x, t) = D
(

∇2φ(x, t) − rφ(x, t) +
u

6
φ(x, t)3 + h(x, t)

)

+ η(x, t) , (5.36)

(see Eq. (5.8)) with noise correlator

〈

η(x, t)η(x ′, t ′)
〉

= 2Γ 2δ(x − x ′)δ(t− t ′) . (5.37)

It is probably the best studied, non-trivial model in non-equilibrium statistical mechanics.

The second most important model is model B (also known as KAWASAKI dynamics)

has conserved order parameter,

φ̇(x, t) = −∇2D
(

∇2φ(x, t) − rφ(x, t) +
u

6
φ(x, t)3 + h(x, t)

)

+ ζ(x, t) , (5.38)

with noise ζ = ∇η, so that the entire right hand side can be written as a gradient. The

integral
∫

ddx φ̇(x, t) = ∂t
∫

ddxφ(x, t) therefore vanishes (ignoring surface terms).

Model C and D introduce a conserved energy density ρ and combine that with non-

conserved order parameter (model C) and conserved order parameter (model D) respect-

ively. If the order parameter is not a scalar but higher dimensional, then its dynamics

is described by model J and by adding an anisotropy, that turns into model E. Finally,

model E becomes model G by an anti-ferromagnetic coupling constant.


