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The Wiener Sausage Problem

The other Wiener!
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The Wiener Sausage Problem

Wiener process

(named after Norbert Wiener)

Consider a random walker in 2D, leaving a trace:

*

Think of the random walker (red dot) as the tip of a pen, spilling ink.

What is the area covered in blue (volume of a “Wiener sausage”,
traced out in one, two, three dimensions)?
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The Wiener Sausage Problem

Wiener Sausage

Motivation

@ Original problem (average area, 2D) solved by Kolmogoroff and
Leontowitsch (1933).

@ Famously studied by Spitzer, Kac and Luttinger.

@ “Wiener Sausage Volume Moments” by Berezhkovskii,
Makhnovskii and Suris (1989).

@ Applications ...
@ Lots of variants and extensions. ..

nnnnn

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 5/41



The Wiener Sausage Problem

Wiener Sausage

Motivation

@ Original problem (average area, 2D) solved by Kolmogoroff and
Leontowitsch (1933).

@ Famously studied by Spitzer, Kac and Luttinger.

@ “Wiener Sausage Volume Moments” by Berezhkovskii,
Makhnovskii and Suris (1989).

@ Applications in
» Medicine, e.g. tissue “priming”, Dagdug, Berezhkovskii and Weiss
(2002).
» Chemical engineering, e.g. agglomerates forming by “sweeping
particles”, Eggersdorfer and Pratsinis (2014).
» Ecology, e.g. feeding plankton, Visser (2007).

> ..

@ Lots of variants and extensions. .. Imperial College
Lond:
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The Wiener Sausage Problem

Wiener Sausage

Motivation

@ Original problem (average area, 2D) solved by Kolmogoroff and
Leontowitsch (1933).

@ Famously studied by Spitzer, Kac and Luttinger.

@ “Wiener Sausage Volume Moments” by Berezhkovskii,
Makhnovskii and Suris (1989).

@ Applications ...
@ Lots of variants and extensions
» Presence of traps, e.g. Oshanin, Bénichou, Coppey, and Moreau
(2002).
» Surface of the sausage, e.g. Rataj, Schmidt and Sporadev (2009).
» Different boundary conditions, e.g. Dagdug, Berezhkovskii and
Weiss (2002).
> .. Imee‘riaI College
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Spattering random walk

Determine the volume of the Wiener using
Statistical Field Theory

Keeping track of a walker’s trace is hard.
Easy (-ier, -ish): Walker spatters ink as it walks.

K<l [>[5H] [+

Asymptotic statistics of spatter is that of a continuous trace "

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 6/41



Spattering random walk

The trajectory of a random walker is self-similar

K<l [>[5H] [+

nnnnn
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Wiener Sausage

Poissonian modification

Wiener Sausage observable difficult in a field theory. Therefore:
Poissonian modification

On the lattice: With Poisson rate H walker jumps to a nearest
neighbouring site, with rate y attempts to place immobile offspring at
current site.

Deposition suppressed if immobile particle is present already.

nnnnn
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Wiener Sausage

Poissonian modification

Wiener Sausage observable difficult in a field theory. Therefore:

Poissonian modification

On the lattice: With Poisson rate H walker jumps to a nearest

neighbouring site, with rate y attempts to place immobile offspring at
current site.

Deposition suppressed if immobile particle is present already.

Anticipate regularisation: Add extinction rate ¢” and r for immobile
species and walkers respectively.
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Wiener Sausage

Poissonian modification

Wiener Sausage observable difficult in a field theory. Therefore:

Poissonian modification

On the lattice: With Poisson rate H walker jumps to a nearest

neighbouring site, with rate y attempts to place immobile offspring at
current site.

Deposition suppressed if immobile particle is present already.

Anticipate regularisation: Add extinction rate ¢” and r for immobile
species and walkers respectively.
Mean field approach: 9,0, = p,(1 — p,)y, where p, number of

immobile offspring and p, number density of walkers. (p, is a functional
of [the entire history of] p,)
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Wiener Sausage

Poissonian modification

Wiener Sausage observable difficult in a field theory. Therefore:

Poissonian modification

On the lattice: With Poisson rate H walker jumps to a nearest

neighbouring site, with rate y attempts to place immobile offspring at
current site.

Deposition suppressed if immobile particle is present already.

Anticipate regularisation: Add extinction rate ¢” and r for immobile
species and walkers respectively.
Mean field approach: 9,0, = p,(1 — p,)y, where p, number of

immobile offspring and p, number density of walkers. (p, is a functional
of [the entire history of] p,)

Perturbation theory: p,(1 — p,)y = Yps — YPu0s-
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Spattering random walk

Wiener Sausage

Perturbation theory

Perturbation theory: p,(1 — p,)Y = vps — YPu0s-

Implementation of the suppressed deposition by
@ (to first order) allowing unrestricted deposition
@ (to second order) removing excess (deposited) particles

The suppression is difficult to deal with.

nnnnn
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Spattering random walk

Wiener Sausage
Mean field theory in the bulk

If returns (and thus previous deposition) can be ignored, total
deposition a is linear in time,

(a) =yt

and Poissonnian moments, P4 (a) = % exp (—y1).
Two intertwined Poisson processes for deposition in the presence of
extinction, generating function

(@) (y) — r/y
M) r/y +1—exp (x)

Imperial College
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Field Theory

Outline

© Field Theory
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Field Theory

Wiener Sausage

Motivation for a field theory

Motivation for a field theoretic study:

@ Benefit: Very flexible regarding boundary conditions, additional
interactions efc.; Very elegant.

@ Two species field theory ...

@ ... with immobile particles ...

@ ...and observables that are spatial integrals.
@ “Doable” version of a “heavy duty” field theory.

@ Guinea pig example of a fermionic problem (excluded volume
constraint).

Excluded volumes are difficult in field theories. May require fermionic
treatment (painful).
Idea: Introduce carrying capacity C, whereby deposition rate drops

Imperial College
Lond

linearly in the occupation, 1 — p,/C. Cheating?  foe
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Field Theory

Wiener Sausage

Implementation of the carrying capacity

—O0—0—0—0—0—0—3=1
L
@ One dimensional lattice, length L, carrying capacity C.

Imperial College
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gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 13/41



Field Theory

Wiener Sausage

Implementation of the carrying capacity

) ) ) ()
=

/ / / N\

L
@ One dimensional lattice, length L, carrying capacity C.
@ Sites within each column equivalent (particles per column).

@ When jumping, probability to hit a neighbouring, occupied site is
its occupation over carrying capacity C.

@ Field-theory now easy (fermionicity is “spurious”).

Imperial College
London
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Field Theory

Wiener Sausage

Implementation of the carrying capacity

TSI
Va'g aVagaVagaVagulaguVasaVas PR
“““‘
L

@ One dimensional lattice, length L, carrying capacity C.
@ Sites within each column equivalent (particles per column).

@ When jumping, probability to hit a neighbouring, occupied site is
its occupation over carrying capacity C.

@ Field-theory now easy (fermionicity is “spurious”).
@ carrying capacity C in system of size L corresponds to carrying capacity
1 on L x C lattice. T ol
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Wiener Sausage

Implementation of the carrying capacit
p ol /x [¢] p\ y
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@ One dimensional lattice, length L, carrying capacity C.
@ Sites within each column equivalent (particles per column).

@ When jumping, probability to hit a neighbouring, occupied site is
its occupation over carrying capacity C.

@ Field-theory now easy (fermionicity is “spurious”).

@ carrying capacity C in system of size L corresponds to carrying capacity
1on L x C lattice. imperial College
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Using a field theory

Step by step:
@ Write down master equation (with carrying capacity).
© Rewrite in terms of operators (Doi-Pelitti).
© Extract propagators and vertices to create diagrams.

© Dimensional analysis, extract relevant couplings, demonstrate
renormalisability.

© Calculate relevant diagrams, renormalise, extract exponents and
other universal quantities.

nnnnn
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Wiener Sausage

Master equation: Bilinear parts —
P nm, ) =)

X

—nP(...,n,m,..)+rn+ DP(...,n+1,m,...)

-~

extinction

—e'mP( ooy, )+ (m+ 0P, m 1,00

extinction

—E Y en(x)P(.. . n(x), ... n(x+e),. )

hoping away

+ Y nx+e)P(.. nx)—1,... .n(x+e)+1,...

—

hoping here

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener

+ non-linear terms ..
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Field Theory

Wiener Sausage

Master equation: Non-linear parts — Difficult

oP(....nym,...) = Z\ bilinear terms ... |+
X

—yn(l—%)ﬂ’(...,n,m,...) +yn(1—%)(P(...,n,m—l,...)

deposition deposition

Imperial College
London
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Field Theory

Doi-Pelitti technique

1) Introduce raising and lowering operators

aT|n>:|n+1> and aln) =nln—1)
Al In) =1In+1) and bln)y =nln—1)

2) Introduce state-vector / generating function

Wy @)=Y PL..nm. )]]a"®]]r"x)0)

{n,m}

Expectation (e) = (Y| e [V) with suitable left vector (¥y|.

nnnnn
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Field Theory

Doi-Pelitti technique
3) Doi-shift operators to simplify diagrammatic expansion:
at=1+a and »Hl=1+0

4) Rewrite master equation

o0P(....nym,...)= Z bilinear terms ... +
X

—yn (1—%) P(....n,m,...) +yn (1—%) P(....nym—1,...)
as (term-by-term messy):

0, [¥) (1) = bilinear terms+
Y vhxa(xa(x) —% b(r)bT(r)b(r) at (r)a(r)

x . london
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Field Theory

Doi-Pelitti technique
5) Introduce Liouvillian:

0, 1¥) ( Z bilinear terms .

+v b(x) af (x)a(x) —% b(r)bT (r)b(r) af (r)a(r)

L= —ybd*d +Z Py vd*d

6) Path integral re-formulation

J DHDEDIDY exp (— Jddkdw (Lo+ £ ))

Imperlal College
nnnnn

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 19/41



Field Theory

Wiener Sausage
Field Theory

@ Extract bare propagators:
(0l @)dlI, @) = ——

(i, @D(K, ")) = wamnnn

0
T

(blk WP, @) =i

0

@ Allow for different renormalisation of initially identical couplings.

@ Dimensional analysis: upper critical dimension d. = 2.

ndor
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Field Theory

Field Theory

Interaction vertices
Different couplings to allow different renormalisation

Li=—thd — ohdd + Apvd + kPl
V2 + EPVH

Diagrams:

T ) © K &
e . S
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Field Theory

Interaction vertices
Different couplings to allow different renormalisation

Li=— 10 — obdd + AMpvd + kb
+ x02dp 4+ EGPHpd

Diagrams: N
T o A K &
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Field Theory

Field Theory

Interaction vertices
Different couplings to allow different renormalisation

Li=— 1pd — ohdd + ApYd + ko
+ xP2d + EGP2Pd

Diagrams:

/ﬁ}\KXE
e R
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Field Theory

Tree level in the bulk (d > 2)

Deposition is suppressed in the presence of deposits.
Without that, deposits could be found all along the walker’s trajectory
(multiple deposits at revisited sites):

:‘(F\r—(—

This diagram is present at tree level. Although it cannot be integrated
out, its contribution to correlation functions can be determined easily.

nnnnn
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Field Theory

Tree level in the bulk (d > 2)

@ Tree level = no loops (return asymptotically irrelevant)

@ Non-linearities present at tree level.

@ »’th moment of the sausage volume a dominated' by trees with n
branches:

(@) = s

<a2>: T O
<a3>: T 0 0

Reproduces Poissonian results above. ..

Imperial College
London

"Lower order terms from other trees.
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Field Theory

Tree level in finite systems

In finite systems,
@ Fourier integrals turn into sums.
@ Loss of translational invariance results in vertices becoming sums.
@ Example

@ Higher orders increasingly messy, e.g.
1111 1 1 1 1 _ 1 6
2 Zga”é n¥ml2m (n+m—l + n—m-+I + —ntm+l n+m+l) — 6 (%)
@ Ignoring return, sausage volume is linear in residence time, whose

moments can be extracted from recurrence relations of moment
generating functions.

Imperial College
London
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Field Theory

Full theory for the bulk (d < 2)

1

@ Walker walks: —
—w + Dk2

@ ...and leaves behind a trace in the form of branched-off particles

?f?«— = bt (x)al (x)a(x)

@ No deposition if a particle is there already

ﬂ = b1 (x)b(x)a’ (x)a(x)

. 1
@ Substrate particles stuck on the lattice: ~ v = ——
—lw + €

nnnnn
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Field Theory

Meaning of vertices

This diagram probes the lattice for deposits (and suppresses further

deposition):

Without it, no loops can be formed — tree level theory.

Interaction of the walker with its past trace. J

Imperial College
London
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ormalisation

Outline

° Renormalisation
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Field Theory

Interaction diagrams

Calculate features of the Wiener sausage using renormalisation.
Deposit along the trajectory

T—(—

...is reduced by suppressed deposition

T

Imperial College
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Field Theory

Interaction diagrams

Calculate features of the Wiener sausage using renormalisation.
Deposit along the trajectory

T—(—

...is reduced by suppressed deposition

¢ ¢ ¢ ¢
NW )

Loop = interaction = signature of collective phenomenon J

Imperial College
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Field Theory

Interaction diagrams

Calculate features of the Wiener sausage using renormalisation.
Deposit along the trajectory

:H(T‘H_

...is reduced by suppressed deposition

Loop = interaction = signature of collective phenomenon J
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Field Theory

Interaction diagrams

Calculate features of the Wiener sausage using renormalisation.
Deposit along the trajectory

:@v—(—

...is reduced by suppressed deposition

1 1
¢ ¢ — = |dw'a%k’
% J @ —w’ + Dk ww’ + €’

Physical origin of UV divergence: Time spent? per volume element
diverges at d > 2 = d,,, upper critical dimension. Above: interaction
irrelevant, size of sphere enters.

Imperial College
London

2Lingering, not returning, [dr (4Dtm)~4/% exp (—(x — x")?/(4D1)).
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Field Theory

Renormalisation

At the heart of the theory is the renormalisation of the following

process:
R

S

A

Imperial College
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Renormalisation

Field Theory

Renormalisation

At the heart of the theory is the renormalisation of the following
process:

#—(—:?
X —t—
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Renormalisation

Field Theory

Renormalisation

At the heart of the theory is the renormalisation of the following
process:
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Renormalisation

Field Theory

Renormalisation

At the heart of the theory is the renormalisation of the following
process:

1
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Field Theory

Renormalisation: What are the loops

What physical process do the loops

correspond to? Trajectory intersecting itself (contract along wriggly

line):

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 30/ 41
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Field Theory

Renormalisation: What are the loops

What physical process do the loops

correspond to? Trajectory intersecting itself twice (contract along
wriggly line):

Imperial College
London
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Results on regular lattices

Outline

© Results on regular lattices
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Field Theory

Results

Focus on first moment of sausage volume as a function of time.

@ In one dimensions: Length covered proportional to square root of
time, (a) = £4,/t2. Exact amplitude!

@ In two dimensions: Area covered linear in time, r (modulo
logarithmic corrections, ¢/ In(z)).

@ In general: (a™) o t™4/2,

@ Next: Finite size scaling

@ In three dimensions and higher: Volume linear in time, .

@ ...random walker may never return.

]

Well known results (Leontovich and Kolmogorov, Berezhkovskii,
Makhnovskii and Suris). ..
@ ...but, hey, what a nice playground for field theory (fermionicity,

Impérial College

renormalisation, calculating moments easily ... sort of). tondon

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 33/41



Extensions

Outline

@ Extensions
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Field Theory

Extension: Regular lattice with open boundary conditions

(0.9]
Nonlinearity changes in finite systems from

K de1,2,3,4 Jddk1,2,3,4 T (ki) T (ko) b (ks ) (ka)

S(wi + wo + wsz + w4)d? (k) + ko + ks + ky)

which originates from

6d(k] + k2 + k3 + k4) — Jddr e—ll‘kle—ll‘kze—ll‘k3e—1l‘k4

Imperial College
London

to ...
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Field Theory

Extension: Regular lattice with open boundary conditions

Kde1,2,3,4 Jddlkl,z,m D bt k)T (k) (ka) b (ky)

nmkl

dlwi + wy + w3 + w4)6d*1(k1 + Ky + k3 +Kg) Ui
with

2 . . . .
Unmkl = Z dZ sin an S qu S qu S qu Imperial College

London
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Field Theory

Extension: Regular lattice with open boundary conditions

2 2
m =’ (Z) Zjdw’ddlk’
ab

1 1
X
—w’ 4+ Dk? + Dg2 w’ + €’

Unmab Uablk

where g, = nmt/L,n=1,2, ... are modes in the finite direction.
Unmix = (2/L) jOde sin(g,x) sin(gux) sin(g;x) sin(gxx) accounts for lack of
translational variance.

Problem: Renormalisation scheme requires the RHS to be
expressed as a multiple of kU,,,.

Solution: Deviation of RHS from multiple of kU, sub- Ieadlngg(

ial College

found in Casimir systems). London
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Field Theory

Extension: Regular lattice with open boundary conditions

2 2
_ 2 z ! 3d—1q.1
m =K (Z) - J'd-w d k

1 1
X
—ww’ 4+ Dk + D@2 w' + €’

Unmab Uablk

where g, = nnt/L,n = 1,2, ... are modes in the finite direction.

Uik = (2/L) fode sin(gp,x) sin(g,,x) sin(g;x) sin(gxx) accounts for lack of
translational variance.

General result in d < 2: (a™) oc mitg™ 1 (L)% e m,
Finite size L has the effect of a lowest mode, ¢; = 7/L.
Large L like d — d — 1 for periodic BC (crossover). Imperial College

London
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Field Theory

More exotic extension: Challenges for dealing with “exotic” lattices

@ Lack of conservation (U, instead of §())
@ New interaction (U, possibly not renormalising to U,,ui)
@ Different spectrum

Imperial College
London
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Field Theory

More exotic extension: Fractal lattices

What is the minimal adjustment to go from regular lattices to networks
and fractals?

d 1
Jd k —w’+Dk”> +Dg? "
Eigenvalues k of d dimensional lattice are themselves a d dimensional
lattice. Spectral dimension d; = 2dy/d,, (regular lattice d; = d).
Works only if (bare) propagator itself does not renormalise (1 = 0).
So: Wiener sausage volume o 1%/2,
Note: Known return time distribution in networks oc r=4/2.

Imperial College
London

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener Bilbao, 07/2014 38/41



Wiener Sausage

More exotic extension: Numerics for fractals

Good support for Wiener sausage on fractals

Lattice fractal d; spectral d
SSTK 1.464 1.16
CRAB 1.584 1.23
ARROW 1.584 1.36
SITE 2 1.55

dy/2
0.58
0.61
0.68
0.77

What about Networks?

gunnar.pruessner@imperial.ac.uk (Imperial) Field Theory for the Wiener

measured
0.58
0.59
0.65
0.76

nnnnn
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Extensions

Wiener Sausage on Networks
What is needed

@ Field theory on networks: Spectrum and structure of eigenvectors
for any network.

@ At least spectral dimension.
@ Exact solution of the Wiener sausage on any network.
@ At least numerics for that.

Imperial College
London
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Extensions

Thank you!

Imperial College
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