## Asynchronously Parallelised Percolation on Distributed Machines

#### Gunnar Pruessner<sup>1</sup> Nicholas R. Moloney<sup>2</sup>

<sup>1</sup>Mathematics Institute, University of Warwick, UK, g.pruessner@warwick.ac.uk

<sup>2</sup>Loránd Eötvös University Budapest, Hungary

Warwick CSC @ Lunchtime Seminar, May 2007



Outline



2 Hoshen-Kopelman Algorithm







#### Illustration of the model



Sites occupied with probability  $p_{\rm s}$ 



#### Definition of a cluste

sites connected through occupied sites and active bonds

g.pruessner@warwick.ac.uk (WMI)

Parallelised Percolation

11/33/114

#### Illustration of the model



Sites occupied with probability  $p_{\rm s}$ 



#### Definition of a cluster

sites connected through occupied sites and active bonds

g.pruessner@warwick.ac.uk (WMI)

11/33/114

#### Illustration of the model



Sites occupied with probability *p*<sub>s</sub>



#### Definition of a cluster

sites connected through occupied sites and active bonds

g.pruessner@warwick.ac.uk (WMI)

Parallelised Percolation

TTAXA TAXAN

#### Key features I



Order parameter  $\theta$ : fraction in the "infinite" cluster In 2D:  $\beta=5/36$ 

WARWICK

#### Key features II



Cluster size distribution (density of *s*-clusters per site):  $P(s) = as^{-\tau} \Im(b(p - p_c)s^{\sigma})$  where  $\tau = 187/91$  and  $\sigma = 36/91$ .

WARWICK

## Key features III



Crossing probability for different system sizes.



#### Why percolation?

- Long history (Flory 1941)
- Renaissance because of Conformal Field Theory (Langlands *et al.* 1992, Cardy 1992)
- Numerics as a guide
  - Study leading to Conformal Field Theory
  - Multiple spanning clusters
- Open questions
  - Higher dimensions
  - universality
  - ▶ relation lattice ↔ Conformal Field Theory



#### Why percolation?

- Long history (Flory 1941)
- Renaissance because of Conformal Field Theory (Langlands *et al.* 1992, Cardy 1992)
- Numerics as a guide
  - Study leading to Conformal Field Theory
  - Multiple spanning clusters
- Open questions
  - Higher dimensions
  - universality
  - ▶ relation lattice ↔ Conformal Field Theory



#### Why percolation?

- Long history (Flory 1941)
- Renaissance because of Conformal Field Theory (Langlands *et al.* 1992, Cardy 1992)
- Numerics as a guide
  - Study leading to Conformal Field Theory
  - Multiple spanning clusters
- Open questions
  - Higher dimensions
  - universality
  - ▶ relation lattice ↔ Conformal Field Theory



### A brief history I

- Three dimensional polymers: Flory 1941
- Mathematics: Hammersley and Broadbent 1954
- $p_c = 1/2$  in 2D bond percolation conjectured in 1955
- $\theta(1/2) = 0$  by Harris, 1960
- $p_c = 1/2$  tackled by Sykes and Essam, 1963
- "Dormant state"

Details: Grimmet, Percolation, 2000



#### A brief history II

- Back on stage: Russo, and Seymour and Welsh, 1978
- Kesten: *p<sub>c</sub>* = 1/2, 1980
- Uniqueness of infinite cluster: Newman and Schulman, 1981
- Renaissance because of Conformal Field Theory for crossing probabilities: Langlands *et al.* 1992, Cardy 1992
- Multiple spanning clusters: Hu and Lin 1996, Aizenman 1997, Cardy 1998
- Percolation is SLE with  $\kappa = 6$ , Smirnov 2001

#### Outline



2 Hoshen-Kopelman Algorithm

#### 3 The Parallel Algorithm





# The Algorithm: Hoshen-Kopelman

Overview



- scan row by row
- label clusters using list of labels
- remember configuration of "active" sites

(Hoshen and Kopelman, 1976)K

#### The Algorithm: Hoshen-Kopelman Step by step

|   |   |                               | label | <i>content</i> [label] |
|---|---|-------------------------------|-------|------------------------|
| 0 | 1 |                               | 1     | -1                     |
|   |   |                               |       |                        |
|   |   |                               |       |                        |
|   |   | r — <del>r</del> —  <br>I I I |       |                        |
|   |   |                               |       |                        |



#### The Algorithm: Hoshen-Kopelman Step by step

|       | label | <i>content</i> [label] |
|-------|-------|------------------------|
| 0 1 1 | 1     | -2                     |
|       |       |                        |
|       |       |                        |
|       |       |                        |
|       |       |                        |



#### The Algorithm: Hoshen-Kopelman Step by step

|           |         |            |          |         | label | <i>content</i> [label] |
|-----------|---------|------------|----------|---------|-------|------------------------|
| 0         | 1       | 1          | 1        | 0       | 1     | -3                     |
| 2         |         |            |          |         | 2     | -1                     |
|           |         | ·          | . –      |         |       |                        |
| $\square$ | — -<br> | г — .<br>I | г —<br>I | — —<br> |       |                        |
|           | — -<br> | ·<br>      | Г —<br>I | <br>    |       |                        |



#### The Algorithm: Hoshen-Kopelman Step by step

|           |           |            |          |      | label | <i>content</i> [label] |
|-----------|-----------|------------|----------|------|-------|------------------------|
| 0         | 1         | 1          | 1        | 0    | 1     | -4                     |
| 2         | 0         | 0          | 1        |      | 2     | -1                     |
|           | i         | i          | i        |      |       |                        |
| $\square$ | — -<br>   | т — .<br>I | г —<br>I | <br> |       |                        |
|           | —   –<br> | T — -<br>I | Г —<br>I | <br> |       |                        |



#### The Algorithm: Hoshen-Kopelman Step by step

|   |   |   |   |   | label | <i>content</i> [label] |
|---|---|---|---|---|-------|------------------------|
| 0 | 1 | 1 | 1 | 0 | 1     | -4                     |
| 2 | 0 | 0 | 1 | 0 | 2     | -1                     |
| 0 | 0 | 3 |   |   | 3     | -1                     |
|   |   |   |   |   |       |                        |
|   |   |   |   |   |       |                        |



#### The Algorithm: Hoshen-Kopelman Step by step





#### Outline



2 Hoshen-Kopelman Algorithm







# The parallel algorithm

**Border Preparation** 

(N. R. Moloney and G.P. 2003)



- scan around the boundary
- move roots into boundary

WARWICK

g.pruessner@warwick.ac.uk (WMI)

Parallelised Percolation

#### The parallel algorithm Border Preparation – Comparison

(N. R. Moloney and G.P. 2003)



- scan around the boundary
- move roots into boundary



# The Algorithm



- Small patches produced at slave nodes (asynchronous)
- Assembly at master nodes:
  - Shift labels for uniqueness
  - Redirect roots larger cluster prevails

g.pruessner@warwick.ac.uk (WMI)

Parallelised Percolation



#### The Algorithm Features



- Huge lattices: 10<sup>6</sup> realisations of 30 000 × 30 000 or a single lattice 22.2 · 10<sup>6</sup> × 22.2 · 10<sup>6</sup> (hierarchical nodes).
- Flexibility (boundary conditions, aspect ratios)
  Reduced correlations by rotating, mirroring and permuting
- Asynchronous
- Minimal hardware (CPU, memory, network)

#### Outline



2 Hoshen-Kopelman Algorithm

#### 3 The Parallel Algorithm





#### Results Cluster Size Distribution



 $p_{\rm s}=0.59274621$ , free boundaries,  $30\,000 imes30\,000$  sites

#### Results Cluster Size Distribution



Site percolation, histogram normalised, shifted and binned  $p_s = 0.59274621$ , free boundaries,  $L = 1\,000$  and 30000

#### Results Winding on a Torus



Probability of winding clusters with particular winding numbers

#### Results Winding on a Torus



(G. P. and N. R. Moloney 2004)

WARWICK

#### Summary

- Very large systems
- Very flexible (reduced correlations)
- Minimal hardware
- Asynchronous
- Numerical test of CFT results
- New open questions (exotic clusters, universality)



#### Acknowledgements

- This work has been carried out at Imperial College London
- Supported partly by EPSRC (NRM + GP), the Beit fellowship (NRM), the NSF (GP) and the Humboldt Foundation (GP)
- Thanks to A. Thomas, K. Christensen, P. Anderson, M. Kaulke, O. Kilian, D. Moore, B. Maguire, and D. Erickson for their help

