Self Organised Criticality in the third decade after BTW

Gunnar Pruessner

Department of Mathematics Imperial College London

London, 14 Feb 2012

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Outline

2 More models

5 Any Answers?

More models Tools in SOC Field theory for SOC Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Prelude: The physics of fractals

Question: Where does scale invariant behaviour in nature come from?

Answer: Due to a phase transition, self-organised to the critical point.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Field theory for SOC Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Prelude: The physics of fractals

- Anderson, 1972: *More is different* Correlation, cooperation, emergence
- 1/f noise "everywhere" (van der Ziel, 1950; Dutta and Horn, 1981)
- Kadanoff, 1986: Fractals: Where's the Physics?
- Bak, Tang and Wiesenfeld, 1987: Self-Organized Criticality: An Explanation of 1/f Noise

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.

site 1

 $2 \ 3 \ 4 \ 5$

- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

Imperial College

London

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial College

London

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton → avalanches.
- Intended as an explanation of 1/f noise. ٥
- Generates(?) scale invariant event statistics. •

The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4/37

London

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Field theory for SOC

Any Answers?

Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

The sandpile model:

- Bak, Tang and Wiesenfeld 1987.
- Simple (randomly driven) cellular automaton \longrightarrow avalanches.
- Intended as an explanation of 1/f noise.
- Generates(?) scale invariant event statistics.

• The physics of fractals.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4 / 37

London

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals **The BTW model** 1/f noise — a red herring? Why SOC? Experiments

The BTW Model

Key ingredients for SOC models:

- Separation of time scales.
- Interaction.
- Thresholds (non-linearity).
- Observables: Avalanche sizes and durations.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

4/37

SOC: The early programme More models

Field theory for SOC

Any Answers?

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

1/f noise — a red herring? I

FIG. 3. Distribution of lifetimes corresponding to Fig. 2. (a) For the 50×50 array, the slope $\alpha \approx 0.42$, yielding a "1/f" noise spectrum $f^{-1.58}$; (b) 20×20×20 array, $\alpha \approx 0.90$, yielding an f^{-1.1} spectrum

From: Bak, Tang, Wiesenfeld, 1987

• Power spectrum $P(f) \propto 1/f$, thus correlation function (via Wiener Khinchin) Imperial College London

SOC in the 3rd decade after BTW g.pruessner@imperial.ac.uk (Imperial) Imperial, 02/2012

5/37

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

1/f noise — a red herring? II

Dimensional analysis:

$$\int df \, 1/f^{\alpha} e^{-2\pi i f t} = \ldots \propto t^{\alpha - 1} = \text{const}$$

- 1/f noise suggests long time correlations
- Initially, SOC was intended an explanation of 1/f noise.
- Initially the BTW model was thought to display 1/f noise.
- Jensen, Christensen and Fogedby: "Not quite."
- Today: Little interest in 1/f.
- Today: Power laws in other observables.
- Today: Scaling questioned.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Emergence!

- Explanation of emergent,
- ...cooperative,
- ... long time and length scale
- ...phenomena,
- ... as signalled by power laws.

Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Why is SOC important?

SOC today: Non-trivial scale invariance in avalanching (intermittent) systems as known from ordinary critical phenomena, but without the need of external tuning of a control parameter to a non-trivial value.

Universality!

- Understanding and classifying natural phenomena
- ... using Micky Mouse Models
- ... on a small scale (in the lab or on the computer).
- (Triggering critical points?)
- But: Where is the evidence for scale invariance in nature (dirty power laws)?

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996)

Precipitation statistics by Peters and Christensen (PRL, 2002)

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

8 / 37

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, *et al.* (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).

Precipitation statistics by Peters and Christensen (PRL, 2002)

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).

Precipitation statistics by Peters and Christensen (PRL, 2002)

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).

• Precipitation statistics by Peters and Christensen (PRL, 2002).

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

8 / 37

More models Tools in SOC Field theory for SOC Any Answers? Prelude: The physics of fractals The BTW model 1/f noise — a red herring? Why SOC? Experiments

Experiments:

Granular media, superconductors, rain...

Photograph courtesy of V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang and P. Meakin.

- Large number of experiments and observations:
- Earthquakes suggested by Bak, Tang and Wiesenfeld.
- Sandpile experiments by Jaeger, Liu and Nagel (PRL, 1989).
- Superconductors experiments by Ling, et al. (Physica C, 1991).
- Ricepiles experiments by Frette et al. (Nature, 1996).
- Precipitation statistics by Peters and Christensen (PRL, 2002).

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

8/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Outline

More models

- Better Models: The Manna model
- Collapse with Oslo
- Exponents in 1,2,3D

Tools in SOC

Field theory for SOC

5 Any Answers?

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

More models

- Initial intention for more models: Expand BTW universality class.
- Later: Provide more evidence for SOC as a whole.
- More models...

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

More models

The failure of SOC?

- Zhang Model (1989) [scaling questioned]
- Dhar-Ramaswamy Model (1989) [solved, directed]
- Forest Fire Model (1990, 1992) [no proper scaling]
- Manna Model (1991) [solid!]
- Olami-Feder-Christensen Model (1992) [scaling questioned, $\alpha \approx 0.05$ (localisation), $\alpha = 0.22$ (jump)]
- Bak-Sneppen Model (1993) [scaling questioned]
- Zaitsev Model (1992)
- Sneppen Model (1992)
- Oslo Model (1996) [solid!]
- Directed Models: Exactly solvable (lack of correlations)

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna Model

dissipation

Manna Model (1991)

- Critical height model.
- Stochastic.
- Bulk drive.
- Envisaged to be in the same universality class as BTW.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

11/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Collapse with Oslo

The Manna Model is in the same universality class as the Oslo model.

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna on different lattices

One and two dimensions

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012 13 / 37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna on different lattices

One and two dimensions

From: Huynh, G P, Chew, 2011

Imperial College

The Manna Model has been investigated numerically in great detail."

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Imperial, 02/2012

13/37

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna on different lattices

lattice	d D	τ	z	α	D_a	τ_a	$\mu_1^{(s)}$	$-\Sigma_s$	$-\Sigma_t$	$-\Sigma_a$
simple chain	1 2.27(2)	1.117(8)	1.450(12)	1.19(2)	0.998(4)	1.260(13)	2.000(4)	0.27(2)	0.27(3)	0.259(14)
rope ladder	1 2.24(2)	1.108(9)	1.44(2)	1.18(3)	0.998(7)	1.26(2)	1.989(5)	0.24(2)	0.26(5)	0.26(2)
nnn chain	$1 \ 2.33(11)$	1.14(4)	1.48(11)	1.22(14)	0.997(15)	1.27(5)	1.991(11)	0.33(11)	0.3(2)	0.27(5)
Futatsubishi	1 2.24(3)	1.105(14)	1.43(3)	1.16(6)	0.999(15)	1.24(5)	2.008(11)	0.24(3)	0.23(9)	0.24(5)
square	2 2.748(13)	1.272(3)	1.52(2)	1.48(2)	1.992(8)	1.380(8)	1.9975(11)	0.748(13)	0.73(4)	0.76(2)
jagged	2 2.764(15)	1.276(4)	1.54(2)	1.49(3)	1.995(7)	1.384(8)	2.0007(12)	0.764(15)	0.76(5)	0.77(2)
Archimedes	2 2.76(2)	1.275(6)	1.54(3)	1.50(3)	1.997(10)	1.382(11)	2.001(2)	0.76(2)	0.78(6)	0.76(3)
nc diagonal square	2 2.750(14)	1.273(4)	1.53(2)	1.49(2)	1.992(7)	1.381(8)	2.0005(12)	0.750(14)	0.75(4)	0.76(2)
triangular	2 2.76(2)	1.275(5)	1.51(2)	1.47(3)	2.003(11)	1.388(12)	1.997(2)	0.76(2)	0.71(6)	0.78(3)
Kagomé	2 2.741(13)	1.270(4)	1.53(2)	1.49(2)	1.993(8)	1.381(9)	1.9994(12)	0.741(13)	0.75(5)	0.76(2)
honeycomb	2 2.73(2)	1.268(6)	1.55(4)	1.51(4)	1.990(13)	1.376(14)	2.000(2)	0.73(2)	0.79(8)	0.75(3)
Mitsubishi	2 2.75(2)	1.273(6)	1.54(3)	1.50(4)	1.999(12)	1.387(12)	1.998(2)	0.75(2)	0.77(7)	0.77(3)

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

London

Better Models: The Manna model Collapse with Oslo Exponents in 1,2,3D

Manna on different lattices

Lattice	\overline{q}	$\overline{q^{(v)}}$	$\langle z \rangle$	D	τ	z	α	D_a	τ_a	$\mu_{1}^{(s)}$	$-\Sigma_s$	$-\Sigma_t$	$-\Sigma_a$
SC	6	1	[0.622325(1)]	3.38(2)	1.408(3)	1.779(7)	1.784(9)	3.04(5)	1.45(4)	2.0057(5)	1.38(2)	1.395(16)	1.36(13)
BCC	8	4	[0.600620(2)]	3.36(2)	1.404(4)	1.777(8)	1.78(1)	2.99(2)	1.444(18)	2.0030(5)	1.36(2)	1.390(19)	1.33(6)
BCCN	14	5	[0.581502(1)]	3.38(3)	1.408(4)	1.776(9)	1.783(11)	3.01(3)	1.44(3)	2.0041(6)	1.38(3)	1.39(2)	1.32(7)
FCC	12	4	[0.589187(3)]	3.35(4)	1.402(8)	1.765(16)	1.78(2)	3.1(2)	1.48(14)	2.0035(11)	1.35(4)	1.37(4)	1.5(5)
FCCN	18	5	[0.566307(3)]	3.38(4)	1.408(7)	1.781(14)	1.787(18)	3.00(4)	1.44(3)	2.0051(8)	1.38(4)	1.40(3)	1.32(9)
Overall				3.370(11)	1.407(2)	1.777(4)	1.783(5)	3.003(14)	1.442(12)	2.0042(3)		1.380(13))

From: Huynh, G P, 2012

Imperial College London

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo

Outline

- SOC: The early programme
- 2 More models

3 Tools in SOC

- Tools in SOC
- Link to growth phenomena
- Field theories for Manna and Oslo

Field theory for SOC

5 Any Answers?

g.pruessner@imperial.ac.uk (Imperial)

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo

Tools in SOC

- (Extensive) numerics (BTW, FFM, BS, Manna, Oslo).
- Analytical tools:
 - Exact solutions (so far: directed models only).
 - Mappings to known (understood?) phenomena.
 - Growth processes and field theories.

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo

Link to growth phenomena

Generic scale invariance Stochastic evolution of sandpile surface.

$$\partial_t \phi(\mathbf{r}, t) = (\mathbf{v}_{\parallel} \partial_{\parallel}^2 + \mathbf{v}_{\perp} \partial_{\perp}^2) \phi + \eta(\mathbf{r}, t)$$

- *Generic* scale invariance (Hwa and Kardar, 1989, and Grinstein, Lee and Sachdev 1990)
- No mass term $-\epsilon \phi$ on the right \longrightarrow conservative dynamics (finiteness generates ϵ).
- Anisotropy (boundaries?) required in the presence of conserved noise.
- Non-trivial exponents in the presence of non-linearities and Imperial College non-conserved noise.

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo

Effect of a mass term

Mass term

$$\partial_t \phi = \nu \nabla^2 \phi - \varepsilon \phi + \ldots + \eta$$

represents disspation

$$\partial_t \int_V \mathrm{d}^d x \, \phi = \mathrm{surface \ terms} - \epsilon \int_V \mathrm{d}^d x \, \phi$$

and correlation length

$$\phi = \ldots e^{-|x|\sqrt{\epsilon/\nu}}$$
.

But: How can a renormalised $\epsilon = 0$ be maintained without trivialising the phenomenon?

London

Tools in SOC Link to growth phenomena Field theories for Manna and Oslo

Field theories for Manna and Oslo Number of charges interpreted as an interface.

- Manna model has a Langevin equation
- Oslo model implements quenched Edwards Wilkinson equation → interfaces!
- Field theories for both still unclear.
- Mechanism of self-organisation still unclear.
- Link to known universality classes.
- Link to directed percolation?

g.pruessner@imperial.ac.uk (Imperial)

SOC in the 3rd decade after BTW

London 19 / 37

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

g.pruessner@imperial.ac.uk (Imperial)

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!

Any Answers?

- Does SOC exist in computer models? Yes. Manna and Oslo models are robust and universal.
- Does SOC exist in nature or experiments? Probably: Superconductors, granular media, earthquakes, precipitation
- Is SOC ubiquitous? Apparently not.
- Is SOC understood? Yes, it looks good!
- Is it worth understanding? Certainly: Understanding of long-range correlations in nature and criticality without tuning.

Thanks!