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Summary

What is SOC?

As far as general use goes, what does SOC normally refer to?

Two extremes:
Anything where “critical behaviour” is observed without tuning of a
parameter.
Anything avalanching.
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What is SOC?
Critical behaviour without tuning?

Typical criticism:

Is the Ising Model at T = Tc SOC?
Is percolation SOC (pc = 1/2 for square, bond and triangular,
site)?
Is a fair random walker SOC?
Is a fair branching process SOC?
Is turbulence SOC?
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What is SOC?
A footnote on turbulence

Scaling largely a matter of dimensional analysis (trivial?)
Separation of time scales in “output” rather than driving (Grinstein,
1995)
Flow of energy to smaller and smaller length scales.
Definition of avalanches only via explicit thresholding (not those of
the dynamics)
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It is somewhat difficult to pinpoint the source of 
the deviations.  Certainly social complexity plays a 
large role.  Examining the three phases individually 
(data sets 1-3), it is clear that the metastable phase 
best matches the power law model. Here we have 
visual linearity (with less bending), a nice spread of 
norm lengths, and solid statistics.  Notice also that in 
this phase, the power law is close to the classic Zipf 
distribution (B=-01.032).4  Repeated trials in this 
phase show that B hovers around –1.5   The other 
phases do not correspond nearly as well, suggesting 
that social norms in particular issues may be 
governed by power laws under certain conditions.  
However, when all three levels of social complexity 
are included—better approximating a social system 
with multiple issues—the combined data with all 
three phases evident conforms to a power law 
distribution. 

Given the artificial nature of the data, the other 
source for deviation is obviously the model itself—
especially the length of the runs.  I arbitrarily set the 
number of rounds in a run to 30,000 and the number 
of runs at 5.  This has very little influence at high or 
low levels of complexity.  In both cases, the length 
of the run is immaterial.  Longer runs at high 
complexity is unlikely to generate the longer norms 
that would cure the bending, and at low complexity 
levels, longer runs would merely lengthen the few 
locked-in norms.  However, in the metastable phase 
(Data set 2), it is likely that such a limit affects the 
number of long norms that appear in the data set.  
Increasing the number of runs (more than 5) and 
increasing the length of the runs (past 30,000) may 
produce a cleaner power law graph for the 
metastable phase. 

In the collapsed data (Figure 9) that takes into 
account all levels of social complexity and includes 
more runs, we still see bending, but also the 
possibility of a more ideal power law model.  This 
data set, in that it contains the long norms from the 
low social complexity runs and the fleeting norms of 
the high social complexity runs, has the potential to 
most closely match the power law model.  In fact, 
when this data is grouped by norm length into 8 
categories (log length of: (0-1.25), (1.25-1.75), 
(1.75-2.25), (2.25-2.75), (2.75-3.25), (3.25-3.75), 
(3.75-4.25), (4.25-4.75)), the bending disappears—
see Figure 10.   

While deviations are apparent, there appears to 
be enough evidence to conclude (at least 
preliminarily) that the norm life cycle produces 
norms governed by a power law model.  The 
implications of this finding are, unfortunately, not 
                                                 
4 For more on Zipf distributions, see Cioffi-Revilla (in 
preparation). 
5 Analyses that focus specifically on the metastable region—
single runs of extended length (100,000 rounds)—also found 
similar results. 

immediately apparent.  I began with a verbal 
abstraction and created a computational abstraction 
from it.  I then gathered and analyzed data from this 
second order abstraction.  What can be learned from 
this?   
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Figure 10: Collapsed Data 
 

First, it is interesting to consider the contrast of 
this analysis with most power law research.  In the 
Pick a Number model, the avalanches are cascades 
of stability—when a norm is in force, all of the 
agents are content, so to speak, behaving 
appropriately, having their expectations met, 
predicting the ‘correct’ number.  In many 
applications (earthquakes, wars, sand piles, forest 
fires, social protests) the avalanches are of 
instability.  Tension is built up through repeated 
input into the system and released in power law 
governed cascades.  In the norm life cycle, tension 
also builds—the agents get more and more 
frustrated as they cannot predict the correct number 
(act appropriately)—but the entrepreneur’s input 
leads to a release that  is actually the emergence of 
stability and a self-reinforcing equilibrium.  
Generalizing beyond norms, therefore, a SOC 
perspective may provide valuable insight into the 
emergence of social order in multiple guises—
institutions, organizations, economies, and polities. 

This analysis provides a very clear assessment 
of the logic of the norm life cycle.  It is clear that the 
framework entails norm emergence and evolution, 
as posited by Finnemore and Sikkink.  Further, the it 
entails SOC; it is a driven threshold model.  As the 
norm life cycle generates norms that are governed 
by power laws, it is at least plausible that the 
framework’s original target (empirical norms) is so 
governed as well.  Thus this analysis provides 
impetus for empirical research agenda on social 
norms that is informed by the insights of SOC.  
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However, while the statistical results are 
evidence that a power law governs the simulated 
norms in the Pick a Number model, visual 
inspection uncovers some significant deviations 
from an ideal power law model in all of the data 
sets.  In data set one, this is far from surprising as 
the statistics themselves are weak at best.  The log-
log graph of data set one (Figure 6) immediately 
rules out a power law distribution given the lack 
linearity.3  At low levels of social complexity the 
model produces a few norms of enormous length 
(one per run) and very few of any other norms. 

While the statistical analysis for the other three 
data sets is more promising, some bending off of an 
ideal power law graph is evident in the graphs for all 
three data sets.  The bending is perhaps most severe 
in Figure 8, where the social complexity is the 
highest.  This data set also produced the most 
constricted scope—with the observations barely 
spanning 2 orders of magnitude.  In this case, the 
noise or social complexity in the system is too high 
to support enough norms of any length (bending at 
the lower values) and long norms are almost non-
existent(the maximum norm length was only 257, in 
comparison with 4738 for data set 2 and 29,949 for 
data set 4).  In the remaining data sets, the spread of 
the observations is more expansive, upwards of 3 
orders of magnitude, but bending is still apparent.  
These graphs (Figures 7 & 9) have significantly less 
bending at the lower values, but still bend in the 
extreme values.   

 

 
 

Figure 6: Low Social Complexity 

                                                 
3 For each of these log-log graphs, the log of the frequency 
is on the Y-axis and the log of the norm length is on the X-
axis. The squares thus represent how often we see a norm 
of a particular length. 

Figure 7: Medium Social Complexity 
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Figure 8:  High Social Complexity 
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Figure 9:  Combined Data Sets 
 

122

Hoffmann, 2005, Figs. 9 and 10

Wars (Roberts & Turcotte, 1998)
Pop charts (Bentley & Maschner, 1999)
Urban Development (Batty & Xie, 1999)
Hospital waiting times (Smethurst & Williams, 2001)
Avalanches of social norms (Hoffmann, 2005)
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The time taken for patients referred by
their general practitioner to see a specialist
consultant varies from month to month.
We analysed this month-to-month vari-
ation in the waiting lists for four dermatol-
ogy specialists over a 6-year period (data
published in monthly reports) using calcu-
lations similar to an early analysis of
monthly cotton prices1. To our surprise, a
double-logarithmic plot of the magnitude
of monthly variations in waiting time
against the frequency with which varia-
tions of this magnitude occur gave a
straight line, indicating that this month-
to-month variation was not random at all
(Fig. 1). There is a clear bias towards small-
er variations, which occur frequently, with
larger variations occurring only rarely; this
phenomenon is apparent over a large
range. Moreover, because the variations
plotted in this way fall on a straight line,
they are conforming to what is termed a
power law.

All four consultants’ waiting lists fol-
lowed exactly the same pattern, mapping
onto the same logarithmic plot, despite their
different clinical sub-specializations and
workloads (Fig. 1). This similarity (known
as finite scaling) is another characteristic
feature of complex systems — the individual
components are self-similar — implying
that the consultants are subject to the same
occult agenda. This agenda is not set by the
patients, doctors or managers, but is an
emergent property of the overall system and
cannot be predicted from inspection of the
individual interacting parts. Waiting lists in
the privately funded sector follow a similar
power law (data not shown).

Power laws are used to describe the
behaviour of systems that are semi-chaotic,
such as sandpile avalanches2, forest fires3

and disease epidemics4. Small variations in
the magnitude of an event occur frequently,
whereas large catastrophic changes are rare.
There is buffering against large changes,
although the system is not completely
immune to them. Complex systems also
often represent a perversely efficient system
that can self-organize5 to cope with low 
levels of resource supply. Such systems
endure intervention, like adding more sand
to the pile, fighting the fire, or introducing
healthcare initiatives to shorten waiting
lists, with minimal alteration to their 
external appearance — so the sand slope
remains the same, the fire burns itself out,
and the waiting list is unchanged. This is
because anything designed to make an
impact on such a complex system is dissi-
pated throughout the network of connected
participants, so it appears to have a self-
regulating life of its own.

Hospital waiting lists therefore represent
a complex system composed of a series of
interconnected components such as the
supply of specialists and the referral rate

from general practitioners. Skin diseases are
common, but for every affected person who
visits their family doctor, there are many
more who do not. These people represent a
large hidden part of the ‘sandpile’ of
demand for medical care6 by filling in the
gaps when, for example, there are more
doctors available or access to them is easier.
As the sandpile is much bigger than the part
the doctors see, huge changes in supply (on
a logarithmic scale) will probably be needed
to meet that demand. That demand may
then change again, creating an even greater
demand, as new diseases appear in society.
Simply throwing in extra resources to meet
demand7, like providing an extra specialist
for a few months, may help the waiting list
temporarily but, like digging into a dry
sandpile, the system then self-organizes
around another level of demand until a bal-
ance is reached, which is then kept in check
by the ‘efficient’ waiting-list system. If self-
organization is occurring, then, the system
must be operating at an efficient equilibri-
um for the level of input.

What are the practical implications of all
this? Caution is called for in extending our
observations based on one speciality at a
single National Health Service teaching
hospital to encompass nationwide health-
service systems. If it turns out that waiting
lists in general conform to power laws, then
this could explain why attempts to reduce
them have only a temporary effect. A para-
doxical feature of waiting lists that conform
to a power law is that they represent the
most efficient configuration for that organi-
zation. Healthcare systems should therefore
be judged by measurements taken from
their patients and not their waiting lists.

Interconnectivity is an important ingre-
dient of complexity modelling and imposes
the potential for catastrophic large-scale
events to be brought about by small innocu-
ous ones. If the system is critically self-orga-

brief communications

NATURE | VOL 410 | 5 APRIL 2001 | www.nature.com 653

nized and not chaotic, these large-scale
events are rare. Computer models of waiting
lists, which are only semi-chaotic, should
provide insight into the main components
of the waiting-list phenomenon.
D. P. Smethurst, H. C. Williams
Centre of Evidence-Based Dermatology, 
Queen’s Medical Centre, University Hospital,
Nottingham NG7 2UH, UK
e-mail: dominic.smethurst@nottingham.ac.uk
1. Mandelbrot, B. B. J. Business 33, 394–419 (1963).
2. Bak, P. How Nature Works: The Science of Self-organized

Criticality (Springer, New York, 1996).
3. Morein, G. & Turcotte, D. L. Science 281, 1840–1842 (1998).
4. Rhodes, C. J. & Anderson, R. M. Nature 381, 600–602 (1996).
5. Banavar, J. R., Maritan, A. & Rinaldo, A. Nature 399, 130–132

(1999).
6. Williams, H. C., Stevens, A. & Raferty, J. in Health Care Needs

Assessment 2nd ser., 261–348 (Radcliffe Medical, Oxford, 1997).
7. Harrison, A. J. Health Serv. Res. Policy 5, 64 (2000).

Materials science

The hardest 
known oxide

Amaterial as hard as diamond or cubic
boron nitride has yet to be
identified1–6, but here we report the

discovery of a cotunnite-structured titani-
um oxide which represents the hardest
oxide known. This is a new polymorph of
titanium dioxide, where titanium is nine-
coordinated to oxygen in the cotunnite
(PbCl2) structure. The phase is synthesized
at pressures above 60 gigapascals (GPa) and
temperatures above 1,000 K and is one of
the least compressible and hardest poly-
crystalline materials to be described.

The hardness of ionic and covalent mat-
erials is related to their elastic properties and
increases with bulk modulus (KT) and shear
modulus1,5,7–9 (Table 1). Titanium dioxide
may have a series of high-pressure phases
with a hardness approaching that of dia-
mond10,11. Cotunnite-structured (OII phase;
space group Pnma) ZrO2 and HfO2 have
extremely high bulk moduli of 444 and 340
GPa, respectively6. If TiO2 were able to exist
in the cotunnite structure, then this material
should also be incompressible and very hard.

We performed lattice-dynamic and ab
initio LCAO-HF and FPLMTO simulations
for plausible structures at pressures up to
100 GPa to identify any that TiO2 might
adopt under high pressure. Structures we
simulated were rutile, anatase, TiO2-II, bad-
deleyite-type (MI phase; space group P21/c),
pyrite (Pa3), fluorite (Fm3m), OI (Pbca)
and OII (refs 6, 10, 11). The results indicat-
ed that cotunnite-structured TiO2 should be
the most stable above 50 GPa (Fig. 1). Our
ab initio calculations predicted a remark-
ably high bulk modulus value for this
phase: 380!20 GPa by LCAO-HF, and
386!10 GPa by FPLMTO calculation.

We used electrically or laser-heated 
diamond anvil cells to try and create 

Figure 1 Monthly waiting-list variations are shown for four con-

sultants (represented by different symbols) over a six-year period.

The month-to-month variations in waiting time t are easily calcu-

lated as, for example, tApril"tMarch #tApril. A wide spread of month-

to-month variations is found and a frequency distribution for each

magnitude of variation is shown. The double-logarithmic plot

reveals a power law relating frequency and magnitude of variation

(Pearson coefficient R$0.96, P%0.0001).
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Smethurst & Williams, 2001, Fig. 1
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Pop charts (Bentley & Maschner, 1999)
Urban Development (Batty & Xie, 1999)
Hospital waiting times (Smethurst & Williams, 2001)
Avalanches of social norms (Hoffmann, 2005)
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What is SOC?
Anything with a power law ?

Gravity, F ∝ r−2

Hospital waiting times (Smethurst & Williams, 2001)
Percolation
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The (field) theory of SOC
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Summary

SOC
1 Non-trivial Scaling (finite size scaling — no control parameter)
2 Spatio-temporal correlations
3 Apparent self-tuning (underlying 2nd order phase transition?)
4 Separation of time scales
5 Avalanching (intermittency)
6 [nonlinear (thresholds) interaction] (supposedly required by 1)

SOC: Non-trivial scale invariance (spatio-temporal correlations!) in
avalanching (intermittent) systems as known from ordinary critical
phenomena, but with internal, self-organised rather than external
tuning of a control parameter (to a non-trivial value).
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The (field) theory of SOC

Stationarity is equivalent to self-organisation to critical point.
Stationarity (lack of additional net deposition):

+ + + . . . = 0

Vanishing deposition at stationarity means that the diagrams in
the bracket vanish .
Requires adjustment of substrate .
Independent of driving .
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The (field) theory of SOC
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At or around criticality
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Driving uniformly, at site 1, at site 0.

The Manna Model is at criticality: No hovering, no sweeping, no
pinching.
Finite size scaling due to lowest mode q1 = π/L.
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At or around criticality
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System size L = 128, L = 256, L = 512, L = 1024.

The Manna Model is at criticality: No hovering, no sweeping, no
pinching.
Finite size scaling due to lowest mode q1 = π/L.
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Suitable observables

The substrate is a good place to look for self-organisation.
The particle density adjusts, but its value is not universal (value to
be compared to the same system).
Correlations in the substrate may be absent or very weak. The
occur to counter scaling in the dynamics.

The substrate is a bad place to look for criticality.
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Suitable observables

The activity is a good place to look for scaling (integrated activity:
avalanche metrics).

Finite size scaling.
Change of resolution.
Thresholding? (may introduce spurious crossover)
Block scaling (conditional to activity).
Scaling should be compared to null models (is it just white noise?).
Exponents are (supposedly) universal.
Moment ratios are (supposedly) universal.
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Block scaling
... is a form of subsampling.

Change of system size may impossible (how about resolution,
threshold — dangerous!).
Block finite size scaling:
Measure densities and fluctuations in varying box sizes.
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Block scaling
... is a form of subsampling.

Block scaling in the directed percolation universality class 5
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Figure 1. Data collapse of the order parameter measured in the unconditional (open

symbols) and the conditional ensemble (filled symbols) for the two-dimensional contact

process with system sizes L = 32, 64, . . . , 512 (up to L = 1024 in the conditional

ensemble) and l = 16, 32, . . . , L (data points for the same system size are connected by

lines). The unconditional order parameter collapses trivially (see text) and is shown for

illustration purposes only. The sloped dashed line has slope 0.795 ≈ β/ν⊥, indicating

the power-law behaviour of the scaling function of the unconditional ensemble, Gu,

defined in (2). The conditional order parameter collapses well under the scaling ansatz

(2), plotting 〈ρ〉c (l; L)lβ/ν⊥ vs. l/L. The horizontal dashed line is the likely asymptote

of the scaling function Gc in the conditional ensemble.

the extinction rate. The two-dimensional contact process belongs to the DP universality

class which is characterised by exponents β = 0.583(3), γ = 0.297(2) and ν⊥ = 0.733(4)

[17], so that β/ν⊥ = 0.795(6).

In site-directed percolation in 2 + 1 dimensions (BCC lattice) the time evolves

discretely [15, 18]. A site is occupied in the following time step with probability p if

at least one of its directed neighbours is occupied, otherwise it is empty. The directed

neighbours of a site are four sites in the preceding time step: The site itself, its right

and upper nearest neighbour and its upper right next nearest neighbour. The critical

value of p in this model has been estimated as pc = 0.34457(1) [17]. This model belongs

to the 2D DP universality class as well.

All measurements are taken at the quasi-stationary state: Starting from random

initial configurations with a small but non-vanishing activity, the systems evolve

Contact process, Pruessner 2008, Fig. 1

Change of system size may impossible (how about resolution,
threshold — dangerous!).
Block finite size scaling:
Measure densities and fluctuations in varying box sizes.
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Block scaling
... is a form of subsampling.Block scaling in the directed percolation universality class 7
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Figure 2. Data collapse of the variance of the order parameter in the unconditional

(open symbols) and the conditional ensemble (filled symbols), as in Figure 1. The

data is shown in rescaled form, as σ2 (ρ) (l; L)l2β/ν⊥ vs. l/L. Again, the horizontal

dashed line is the likely asymptote of the scaling function Fc (see (3)) of the conditional

ensemble, while the sloped dashed line has slope β/ν⊥ ≈ 0.795, expected to be the

asymptote of the unconditional ensemble. The dotted line (apparent asymptote) with

slope 0.681, however, fits the numerical data very convincingly, indicating that the

asymptotic regime has not yet been reached.

However, strictly this argument does not apply, because l = 1 cannot be expected

to be large compared to the lower cutoff l0 (and in fact is not in the systems

studied numerically in this article). On the other hand, one might argue that

σ2
u (ρ) (l; L)/σ2

u (ρ) (l = 1; L) can be expected to remain finite in the thermodynamic

limit. While this is not a necessity, the alternative would imply a rather exotic behaviour

of the variance, with the dotted line (the “apparent asymptote”) in Figure 2 moving

further and further away from σ2
u (ρ) (l = 1; L) (which necessarily scales like L−β/ν⊥ ,

dashed line in Figure 2) with increasing L.

If σ2
u (ρ) (l; L)/σ2

u (ρ) (l = 1; L) converges and does not asymptotically vanish in L,

then σ2
u (ρ) (l; L) inherits the scaling of σ2

u (ρ) (l = 1; L) in L and Fu(x) = Fu(1)xβ/ν⊥

for small x, so that σ2
u (ρ) (l; L) = DuFu(1)l−β/ν⊥L−β/ν⊥ , for small l/L.

Because the scaling function is a power law only in the asymptote, for intermediate

values of x = l/L the apparent scaling of σ2
u (ρ) (l; L) might produce very different

effective exponents. This can be seen in Figure 2 where the slope suggests Fu(x) ∝ x0.681.

A direct estimate of the scaling of σ2
u (ρ) (l; L) in l, at a given, fixed L would then suggest

Contact process, Pruessner 2008, Fig. 2

Change of system size may impossible (how about resolution,
threshold — dangerous!).
Block finite size scaling:
Measure densities and fluctuations in varying box sizes.
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Summary

A solid definition of SOC is hard to come by.
I propose: Scaling (non-trivial, spatio-temporal, finite size),
self-organisation to a critical point, intermittency, non-linear
interaction.
Henrik Jensen: SDIDT (slowly driven, interaction dominated,
threshold systems).
Field theory: Truly at the critical point.
Observables: Scaling to be found in the activity, not the substrate.
Block scaling?

THANKS!
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