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Introduction

Random walks are
. . . used everywhere in the natural sciences, finance, sociology
etc.
. . . a recipe to explore space by making independent moves as
time goes by.
. . . easy to handle mathematically, because there is no
interaction.
. . . at the basis of more realistic and thus more complicated
models.
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Example: One dimensional random walk with periodic
boundaries

In every time step
a particle
hops with equal probability either left or right.
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What is a random walk?
Examples: 1D, 2D, boundary conditions
Dimensional arguments

Example: 2D random walk with periodic boundaries

Paradigm shift: Complicated physics behind “kicking” wrapped up in
“randomness”.
Consequences? Enormous!!
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The Maths
Deterministic motion:

ẋ(t) = v ballistic motion

Particle with position x(t) takes time t = L/v to explore distance L.
Double the distance, double the time.
Stochastic motion:

ẋ(t) = η(t) with η the noise

Particle with position x(t) takes time t = L2/ D to explore distance L.1

Double the distance, quadruple the time.
Diffusion constant

1. . . on average . . . something like that . . .
What does it mean? Explore? On average?
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The diffusion constant

Degree (strength) of randomness: Parameterised Diffusion
constant D.
Units? Square length per time (square meters per seconds).
Rule of thumb: Where ballistic motion uses velocity (t = L/v),
random motion uses the diffusion constant (t = L2/D).

Looks like a random walker is very inefficient. It’s not! Not at all!
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Escape time
Application: Time for a drunkard to leave the pub.

How does the escape time depend on the size of the door and the
system size?
Hardly at all (logarithmically, ln(d/L))!
Walker explores area linearly in time.
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The trajectory of a random walker is self-similar
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A random walkers explores the plane

Random walkers are very efficient at exploring two dimensions.
Random walkers are very inefficient at exploring one dimension.

Inefficiency due to returning where they have been before.

Question: How many distinct sites are visited per time (in one
dimension, two dimensions, . . . )?
Volume of a Wiener!
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Wiener process
(named after Norbert Wiener)

Consider a random walker on a 2D lattice:

Think of the random walker (red dot) as the tip of a pen, spilling ink.
What is the area covered in blue (volume of a “Wiener sausage”,
traced out in one, two, three dimensions)?

g.pruessner@imperial.ac.uk (Imperial) From random walks to collective phenomena London, 11/2012 14 / 23


rw_wiener_cropped.mp4
Media File (video/mp4)



Introduction
Properties of random walks

The field theory of the Wiener

Spattering random walk
Statistical field theory
Renormalisation
Results

Outline

1 Introduction

2 Properties of random walks

3 The field theory of the Wiener
Spattering random walk
Statistical field theory
Renormalisation
Results

g.pruessner@imperial.ac.uk (Imperial) From random walks to collective phenomena London, 11/2012 15 / 23



Introduction
Properties of random walks

The field theory of the Wiener

Spattering random walk
Statistical field theory
Renormalisation
Results

Determine the volume of the Wiener using
Statistical Field Theory

Keeping track of a walker’s trace is hard.
Easy (-ier): Walker spatters ink as it walks.

On the large scale, spatter becomes continuous trace.
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Determine the volume of the Wiener using
Statistical Field Theory

Walker walks:

=
1

−ıω+ Dk2

. . . and leaves behind a trace in the form of branched-off particles

No deposition if a particle is there already
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Details of the diagrams

Deposition is suppressed in the presence of deposits.
Without that, deposits could be found all along the walker’s trajectory
(multiple deposits at revisited sites):

This diagrams probes the lattice for deposits (and suppresses further
deposition):

Interaction of the walker with its past trace.
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Field theory of the Wiener sausage
Interaction diagrams

Calculate features of the Wiener sausage using renormalisation.
Deposit along the trajectory

. . . is reduced by suppressed deposition

Loop = interaction = signature of collective phenomenon
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Renormalisation

At the heart of the theory is the renormalisation of the following
process:

= +

+

+

+ . . .
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Renormalisation
What are the loops?

What physical process do the loops

correspond to? Trajectory intersecting itself:

g.pruessner@imperial.ac.uk (Imperial) From random walks to collective phenomena London, 11/2012 21 / 23



Introduction
Properties of random walks

The field theory of the Wiener

Spattering random walk
Statistical field theory
Renormalisation
Results

Renormalisation
What are the loops?

What physical process do the loops

correspond to? Trajectory intersecting itself twice:
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Volume of a Wiener by field theory
Results

In one dimensions: Length covered proportional to square root of
time,

√
t (inefficient).

In two dimensions: Area covered linear in time, t (efficient!).
Area grows as length — so no return?
It does, nevertheless (infinitely often to every point. . . ).
In three dimensions and higher: Volume linear in time, t.
. . . random walker may never return.
Well known results (Leontovich and Kolmogorov, Berezhkovskii,
Makhnovskii and Suris). . .
. . . but, hey, what a nice playground for field theory (fermionicity,
renormalisation, calculating moments easily . . . sort of).

Thank you!
g.pruessner@imperial.ac.uk (Imperial) From random walks to collective phenomena London, 11/2012 23 / 23


	Introduction
	What is a random walk?
	Examples: 1D, 2D, boundary conditions
	Dimensional arguments

	Properties of random walks
	Escape time
	Trajectory of a random walker
	Volume of a Wiener

	The field theory of the Wiener
	Spattering random walk
	Statistical field theory
	Renormalisation
	Results


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	0.76: 
	0.77: 
	0.78: 
	0.79: 
	0.80: 
	0.81: 
	0.82: 
	0.83: 
	0.84: 
	0.85: 
	0.86: 
	0.87: 
	0.88: 
	0.89: 
	0.90: 
	0.91: 
	0.92: 
	0.93: 
	0.94: 
	0.95: 
	0.96: 
	0.97: 
	0.98: 
	0.99: 
	0.100: 
	0.101: 
	0.102: 
	0.103: 
	0.104: 
	0.105: 
	0.106: 
	0.107: 
	0.108: 
	0.109: 
	0.110: 
	0.111: 
	0.112: 
	0.113: 
	0.114: 
	0.115: 
	0.116: 
	0.117: 
	0.118: 
	0.119: 
	0.120: 
	0.121: 
	0.122: 
	0.123: 
	0.124: 
	0.125: 
	0.126: 
	0.127: 
	0.128: 
	0.129: 
	0.130: 
	0.131: 
	0.132: 
	0.133: 
	0.134: 
	0.135: 
	0.136: 
	0.137: 
	0.138: 
	0.139: 
	0.140: 
	0.141: 
	0.142: 
	0.143: 
	0.144: 
	0.145: 
	0.146: 
	0.147: 
	0.148: 
	0.149: 
	0.150: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 


