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1 Introduction

Holomorphic maps between complex manifolds have many properties which
distinguish them among general smooth maps. Consider, for example, the
case of a map between Riemann surfaces. A holomorphic map is represented
locally, in suitable co-ordinates, by one of the models z 7→ zk for k ≥ 0.
These models are very different from the models of generic smooth maps
between surfaces, which are, in addition to the points where the map is a
local diffeomorphism, folds and cusps. It is interesting to see what happens if
we perturb the holomorphic map z 7→ z2 by a small non-holomorphic term.
So for ε > 0 we define f (ε) : C→ C by

f (ε)(z) = z2 + 2εz.

Thus ∂f
(ε)

∂z
= 2z and ∂f

(ε)

∂z
= 2ε. The real derivative of f (ε), has rank 2 at

points where |∂f
(ε)

∂z
| 6= |∂f

(ε)

∂z
|, that is to say where |z| 6= ε. The point z = εeiθ

maps to the point γ(θ) = ε2(e2iθ+2e−iθ) and γ′(θ) = 2iε2e−iθ(e3iθ−1). Thus
γ′ vanishes at the three points cube roots of unity. These three points are
cusps of the map f (ε) and the remaining points on the circle |z| = ε are fold
points: the map f (ε) maps this circle onto a curvilinear triangle with the
three cusps as vertices. The reader is invited to visualise this map.
This example illustrates that holomorphic maps can be much simpler than

typical smooth maps. We can abstract the local character of holomorphic
maps and consider smooth maps which are locally modelled on holomor-
phic ones. This gives a way to study and exploit the topological aspects of
holomorphic maps, independent of the finer details of the complex geometry
and in a wider setting. For example we can consider branched covers of 2-
manifolds as a class of maps, independent of the existence of Riemann surface
structures. A natural setting for this theory turns out to be symplectic topol-
ogy, and the mapping class groups of surfaces, and certain generalisations,
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enter in an essential way. In this article we will outline parts of this theory
and discuss some open problems. A discussion in a somewhat similar spirit
will be found in [5].

2 Holomorphic Morse theory and Dehn twists

Let f : X → C be a proper, nonconstant, holomorphic map from a connected
complex manifold X of complex dimension n to the complex numbers. We
suppose that f is a “holomorphic Morse function”, so that at each point
where the derivative ∂f vanishes the Hessian ∂2f is nondegenerate. These
critical points form a discrete set in X. For simplicity we also suppose that
the images of these points (the critical values) are distinct, so for each critical
value there is just one corresponding critical point. Let Δ denote the set of
critical values in C. Just as in ordinary Morse Theory, the essential thing in
understanding the topology of the map f is to understand the fibres Xt =
f−1(t) where t ∈ C is either a critical value or close to a critical value. The
difference from the real case is that for t /∈ Δ the fibres are all diffeomorphic.
Indeed if we put X ′ = f−1(C \Δ) then the restriction f : X ′ → C \Δ is a
C∞ fibration and the base C \Δ is connected (in contrast to the analogous
situation in real geometry). Now recall the general notion of monodromy.
Suppose φ : E → B is a C∞ fibration over a connected base, with base point
b0 ∈ B and with fibre F = φ−1(b0). Let ΓF denote the mapping class group
of the fibre: the isotopy classes of self-diffeomorphisms of F . Then we have
a monodromy homomorphism

ρφ : π1(B, b0)→ ΓF .

This can be defined by choosing a Riemannian metric on the total space E
which gives a family of horizontal subspaces: the orthogonal complements of
the tangent spaces to the fibres. (In other language we can regard this as
a choice of connection on the bundle E regarded as a bundle with structure
group Diff(F ).) For any smooth based loop γ : [0, 1]→ B and any point y in
φ−1(b0) there is a horizontal lift γ̃ of γ starting at y. We define R : F → F by
R(y) = γ̃(1). Then R is a diffeomorphism of the fibre which, up to isotopy,
is independent of the choice of metric and homotopy class of the loop γ.
Applied in our situation we get a monodromy homomorphism

ρf : π1(C \Δ)→ ΓF ,

where F is the fibre over some fixed base point in C \ Δ. Of course the
fundamental group of C \ Δ is a free group, with standard generators γi,
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say, winding once around a single critical value. This notion has two roots
in classical complex analysis. On the one hand we can consider the case
when n = 1, so X is a Riemann surface presented as a branched cover of
C. The fibre F is just a set of d points, where d is the degree of the map,
and the mapping class group is the permutation group Sd on d objects. The
monodromy is just the data discussed in standard Riemann surface texts,
which specifies how to glue together the sheets of the branched covering. In
this case ρ(γi) is a transposition in Sd. On the other hand we can consider the
case where n = 2 so the fibres are Riemann surfaces. Thus f : X → C can
be regarded as a family of Riemann surfaces which degenerate over Δ. The
classical topic here is not so much the monodromy in the isotopy group but
its composite with the natural action of the diffeomorphisms on the homology
of the fibre, which yields a homological monodromy

ρH1f : π1(C \Δ)→ GL(H1(F )).

For example, let z1, . . . , zn be fixed distinct points in C and let X0 be the
subset of C3

X0 = {(z, w, λ) : w
2 = (z − λ)(z − z1) . . . (z − zn)}.

Let f0 be the restriction of the projection (z, w, λ) 7→ λ. In a standard way,
we can compactify the fibres of f0 to obtain a complex manifold X, containing
X0 as a dense open set, and with a extension of f0 to a proper holomorphic
map f : X → C. Then the set Δ is just {z1, . . . , zn} and for λ /∈ Δ the fibre
f−1(λ) is the hyperelliptic Riemann surface defined by the equation

w =
√
(z − λ)(z − z1) . . . (z − zn).

The expression
dz

√
(z − λ) . . . (z − zn)

defines a smoothly varying family of holomorphic 1-forms over the smooth
fibres. Locally in the base we can fix a basis for the homology of the fibre
and hence define the corresponding periods, by integrating the holomorphic
form. Explicitly, this amounts to choosing a suitable collection of paths σα
in C with end points in {z1, . . . , zn, λ} and the periods are then written as

∫

σα

dz
√
(z − λ) . . . (z − zn)

,

for a choice of branch of the square root. The issue addressed by the knowl-
edge of the monodromy homomorphism, in this special case, is how these
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contour integrals change when λ traces out a path encircling one of the fixed
points zi.
We can now discuss the central issue: what is the monodromy of a holo-

morphic Morse function around a loop about a single critical value? This is
the analogue of the description of the change in the level set of a real Morse
function as one crosses a critical value. As in that case, a crucial observation
is that the problem can be reduced to a standard local model. Indeed if
we take a very small loop γi about a critical value then we can choose the
horizontal subspaces so that the monodromy is the identity map outside the
intersection F ∩B of the fibre F with a suitable small ball B in X centred on
the critical value. Then we can regard the monodromy as a compactly sup-
ported diffeomorphism of F ∩B, defined up to compactly supported isotopy.
To see what is going on take the standard local model to be the map

g(z1, . . . , zn) = z
2
1 + . . .+ z

2
n,

from Cn to C, and take the base point b0 to be 1 ∈ C. We consider the
subset of the fibre g−1(b0) given by the real points g

−1(b0) ∩ R
n which we

denote by V . This is just the standard unit sphere in Rn. For any t ∈ R we
can consider similarly g−1(t) ∩Rn. This is the sphere of radius

√
t for t ≥ 0

and the empty set if t < 0. We can choose a family of horizontal subspaces
which preserves the real points so if we “parallel transport” the fibre from
1 towards 0 along the positive real axis the parallel transports of V shrink
down to the critical point.
Now consider the total space TSn of the tangent bundle of the n-sphere.

The standard “generalised Dehn twist” is a compactly supported diffeomor-
phism of TSn, canonical up to compactly supported isotopy. We can define
it as follows. The points in TSn can be identified with pairs (v, w) of orthog-
onal vectors v, w in Rn, where |v| = 1. If w 6= 0 then for any angle θ we
define the usual rotation Rθ in the (oriented) plane spanned by v, w. Now
choose a function Θ on [0,∞) such that Θ(s) = 0 if s is small and Θ(s) = π
if s is large. Define a map D : TSn → TSn by

D(v, w) = RΘ(|w|)(−v,−w),

with the obvious interpretation if w = 0: i.e. D(v, 0) = (−v, 0). Then
D(v, w) = (v, w) if |w| is large and D(v, w) = (−v,−w) if |w| is small. Also,
D is a diffeomorphism, with inverse

D−1(v′, w′) = R−Θ(|w′|)(−v
′,−w′).

Thus this model Dehn twist is a compactly supported diffeomorphism of
TSn, equal to the antipodal map on the zero section.
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Now return to the sphere V ⊂ g−1(b0) in the standard model above. This
sphere is a “totally real” submanifold of the fibre; that is, multiplication of
tangent vectors by I yields an identification between the tangent bundle TV
and the normal bundle of V in the fibre F = g−1(b0). In other words, a tubu-
lar neighbourhood N of V in F can be identified with a neighbourhood N ′ of
the zero section in the tangent bundle of V . Now we can obviously suppose
that our model map D is supported in N ′ and so, via this identification, we
can regard D as a diffeomorphism of F , supported in the neighbourhood N ′.
The fundamental fact is that this is the monodromy around the critical value.
In general then we arrive at the following description of the topology of

a map f : X → C as considered above.

• In the model fibre F = f−1(b0) there are “vanishing cycles” Vi associ-
ated to the critical values zi (and the loops γi around the zi). Each Vi
is an embedded (n− 1)-sphere uniquely defined up to isotopy, and we
have an identification (fixed up to homotopy) of the normal bundle of
Vi in F with the tangent bundle.

• The monodromy around the loop γi is the Dehn twist DVi about Vi,
defined using an identification of a tubular neighboourhood as above
(which is independent of choices, up to isotopy).

We can relate this discussion to the classical problems considered above.
First, if n = 1 the “vanishing cycle” is just a copy of S0, i.e. a pair of
points, and the “Dehn twist” is just a transposition (the antipodal map on
S0). If n = 2 we get the familiar Dehn twists in the mapping class groups of
Riemann surfaces. It is easy to see that the Dehn twist about an embedded
circle V in a Riemann surface Σ acts on H1(Σ) by

α 7→ α + 〈V, α〉V, (1)

where 〈 , 〉 is the intersection form. So we arrive at the classical Picard-
Lefschetz formula for the homological monodromy ρH1 .
Some words about signs may be in order here. Given an embedded circle

V in a 2-manifold Σ, the Dehn twist about V is completely specified by a
choice of orientation of Σ, it does not require an orientation of V . Thus in
the Picard-Lefschetz formula (1) we have momentarily fixed an orientation
of V , to define the homology class, but obviously the formula is unchanged
if we change orientation. On the other hand, with a fixed orientation of Σ,
the inverse of a Dehn twist is not a Dehn twist as we have defined things:
it is a Dehn twist of the manifold Σ with the opposite choice of orientation.
The same holds in higher dimensions. Note however that the usual orienta-
tion of the neighbourhood of V induced by the identification with TV differs
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from the standard complex orientation by a sign (−1)n−1. Thus when n is
odd the self-intersection of V , with respect to the complex orientation is −2.
The Picard-Lefschetz formula (1) for the action on the middle-dimensional
homology is the same in all dimensions but the significance is somewhat dif-
ferent depending whether n is or even or odd. The fibre F has real dimension
2(n− 1) and the intersection form is antisymmetric if n is even and symmet-
ric if n is odd. In the second case the Picard-Lefschetz transformation is of
order 2; the reflection defined by vector [V ] with [V ].[V ] = −2.
In the case when n = 1 and X is a 2-manifold we can reverse the con-

structions above. That is we have the classical

Proposition 1 There is a one-to-one correspondence between equivalence
classes of data:

• Riemann surfaces X with a proper map f : X → C of degree d ≥ 1
having only simple branch points, mapping to distinct points in C.

• Discrete sets Δ ⊂ C and homomorphisms ρ : π1(C \Δ)→ Sd mapping
each standard generator to a transposition.

(We leave it to the reader to spell out the exact equivalence relations to
impose on these two kinds of data.)
The analogue of this in higher dimensions does not hold: we cannot create

a pair (X, f) to realise arbitrary data (Δ, ρ). But we can extract the topology
from the situation by enlarging our class of spaces.

Definition 1 A Topological Lefschetz Fibration consists of a smooth oriented
2n-dimensional manifold X and a proper map f : X → C with the following
properties.

• For each point x0 of X either dfx0 is surjective or, when x0 is a critical
point of f , there is an oriented chart ψ : U → Ũ where U is a neigh-
bourhood of x0 in X and Ũ is a neighbourhood of the origin in C

n such
that the composite f̃ = f ◦ ψ−1 is

f̃(z1, . . . , zn) = f(x0) + z
2
1 + . . .+ z

2
n.

• If x0 and x1 are two different critical points of f then f(x0) 6= f(x1).

Clearly such a map has a well-defined smooth fibre F , an oriented 2(n−1)-
manifold.
We say that two Topological Lefschetz Fibrations f1 : X1 → C, f2 :

X2 → C are are equivalent “over a fixed base” if there is a diffeomorphism
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α : X1 → X2 with f1 = f2 ◦ α. This implies that the two fibrations have the
same set of critical values in C. Now fix a discrete subset Δ ⊂ C and a set
of standard generators γi for π1(C \Δ). Then we have

Proposition 2 There is a one-to one correspondence between:

• Topological Lefschetz fibrations f : X → C with fibre F and critical set
Δ modulo equivalence over a fixed base.

• Collections of isotopy classes of embedded (n− 1)-spheres Vi ⊂ F with
homotopy classes of isomorphisms between the normal and tangent bun-
dles of the Vi, modulo equivalence induced by the action of a single
element of ΓF .

The proof of the Proposition is straightforward. Suppose for example
that we are given data of the second kind. Let Ω be the complement in C of
small disjoint discs about the points of Δ. Then Ω is homotopy equivalent
to a wedge of circles so by standard theory fibrations with fibre F over Ω are
determined by their monodromy. So we can construct a fibration XΩ → Ω
with the Dehn twists in the Vi as monodromy around γi. On the other hand,
given a single V ⊂ F , we can construct a standard model π : YV → C
whose monodromy around a large circle is the Dehn twist about V . Now
we construct X by gluing these standard models to XΩ to fill in the missing
discs.
The following example shows that one does need to take some care in

formulating this correspondence. Suppose n = 2 and f : X → C is, say, a
holomorphic Lefschetz fibration and x0 is a point in X with f(x0) /∈ Δ. Now
let X̂ be the “blow-up” of X at the point x0 and f̂ be the composite of the
f and the canonical map X̂ → X. The critical set Δ̂ is Δ ∪ {f(x0)}. The
smooth fibres of f̂ are the same as those of f . The fibre of f̂ over f(x0) is
the union of the smooth fibre F and the exceptional sphere E ∼= S2, meeting
at one point. What happens is that the identification between the fibres of
f and f̂ realises the diffeomorphism beween the connected sum F]S2 and F .
The vanishing cycle associated to the extra critical value is a trivial circle in
F (i.e it bounds a disc) and the resulting monodromy is trivial, up to isotopy.
So f : X → C and f̂ : X̂ → C have in sense the “same” monodromy, even
though the manifolds X, X̂ are different.
There is another natural notion of equivalence between Topological Lef-

schetz fibrations. We say that f1 : X1 → C, f2 : X2 → C are equivalent if
there is a diffeomorphism α : X1 → X2 and a diffeomorphism β : C → C
such that β ◦ f1 = f2 ◦ α. This means that β maps the set of critical values
of f1 to that of f2. Clearly the equivalence classes of Topological Lefschetz
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fibrations correspond to orbits of an a action of the group of diffeomorphisms
of the plane with a marked set Δ on the set of equivalence classes over a fixed
base.

3 Lefschetz pencils and symplectic four-manifolds

Holomorphic Lefschetz fibrations typically arise in the following way. For
simplicity we will restrict the discussion to complex dimension 2. Suppose
that Y ⊂ CPN is a complex projective surface. We choose a generic (N − 2)
dimensional subspace CPN−2 ⊂ CPN , meeting Y transversely in a finite
set of points A ⊂ Y , and we consider the “pencil” of hyperplanes through
CPN−2. These cut out a 1-parameter family of hyperplane sections of Y .
Suppose Zi are homogeneous co-ordinates on CP

N and CPN−2 is defined by
the equations Z0 = Z1 = 0. Then g = Z1/Z0 is a meromorphic function on
Y and the hyperplane sections are the fibres g−1(λ), for different λ ∈ CP1.
The meromorphic function g is not a well-defined map on Y but if we blow
up the points of A we get a well-defined map g̃ : X → CP1 where X is the
blow up of Y . For generic choices of the axis CPN−2 the restriction of g̃
to g̃−1(C) will be a holomorphic Lefschetz fibration of the kind considered
before. Thus our previous discussion needs to be extended in two ways

• In place of the base C we have the Riemann sphere CP1. This makes
little difference. We can arrange things so that the fibre over ∞ is
smooth, then we have the additional constraint that the product of
the monodromies around all the γi should be trivial regarded as an
element of the mapping class group of the fibre (since it represents the
monodromy around a large circle in C).

• We may wish to remember the fact that the total space X arose as
the blow up of Y . The exceptional spheres created by the blowing up
appear as sections of the fibration. Thus we can take our fibre to be a
Riemann surface Σ with a collection of marked points P = {pα}, and
our vanishing cycles to be circles in Σ \ P . We introduce the mapping
class group ΓΣ,P of compactly supported diffeomorphisms of Σ\P mod-
ulo compactly supported isotopy. (Equivalently, diffeomorphims equal
to the identity on fixed small discs about the pα.)Then the condition
that the sections have self-intersection −1 goes over to the condition
that

DV1 ◦ . . . DVν = T, (2)

in ΓΣ,P where T is the product of Dehn twists about small circles around
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the pα. (Thus T is trivial in the unrestricted mapping class group, but
not usually in ΓΣ,P .)

Again we can define a topological analogue of this picture.

Definition 2 A Topological Lefschetz pencil (TLP) on a compact smooth
oriented 4-manifold X consists of the following data.

• Finite, disjoint subsets A,B ⊂ X.

• A smooth map f : X\A→ S2 which is a submersion outside A∪B; such
that f(b) 6= f(b′) for distinct b, b′ ∈ B and which is given in suitable
oriented charts by the local models (z1, z2) 7→ z2/z1 (in a punctured
neighboourhood of a point in A) and (z1, z2) 7→ z21 + z

2
2 + Constant (in

a neighbourhood of a point in B).

The notions of “equivalence over a fixed base” and “equivalence” go over
in an obvious way.
Given a Topological Lefschetz pencil we define the “hyperplane class”

h ∈ H2(X;Z) to be the Poincaré dual of the homology class of a fibre of f .
(More precisely, the closure in X of a fibre of f in X \A.) We define another
class K(X, f) ∈ H2(X;Z) as follows. Over X \ (A∪B) we have an oriented
2-plane bundle V given by the tangent space to the fibre of f . We claim that
this can be extended to X and the extension is unique up to isomorphism.
For if N is a small ball around a point of A or B we can extend V over N if
we have a trivialisation of V over ∂N . Since ∂N ∼= S3 and H2(S3) = 0 such
a trivialisation exists. Morover since H1(S3) = 0 any two trivialisations are
homotopic and this implies that any two extensions are isomorphic. Now we
set

K(X, f) = −(c1(V ) + 2f
∗([S2]),

where c1(V ) is the first Chern class of V , regarded as a complex line bundle.
By straightforward algebraic topology we have:

Proposition 3 • The genus of a smooth fibre of f is 1
2
(h.h+K(X, f).h+

2).

• The number of points in A is h.h.

• The number of points in B is χ(X) + h.h+ 2K(X, f).h.

So far we have been considering maps from either complex algebraic man-
ifolds (the classical case) or general smooth manifolds. The interest of these
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ideas is highlighted by the connection with the intermediate class of sym-
plectic manifolds. We say that a TLP on a 4-manifold X is compatible with
a symplectic form ω on X if we can choose the local co-ordinates (z1, z2)
appearing in the definition such that ω is a Kahler form in these co-ordinates
(i.e. has type (1,1)) and if the fibres of f in X \ (A ∪ B) are oriented sym-
plectic submanifolds (i.e ω is strictly positive on the fibre, with respect to
the induced orientation). In general, for any symplectic manifold (X,ω)
we can define a “canonical class” K(ω) to be minus the first Chern class
of the tangent bundle, for any compatible almost complex structure. It is
easy to see that if a pencil is compatible with a symplectic structure then
K(ω) = K(X, f).

Theorem 1 Let X be a smooth oriented 4-manifold and let h ∈ H2(X;Z)
be a class with h2 > 0. Then if X has a TLP with hyperplane class h it
admits a compatible symplectic form ω with [ω] = h. Conversely if X admits
a symplectic form with [ω] = h then for sufficiently large integers k, X admits
a compatible TLP with hyperplane class kh.

This is a composite of results of Gompf [7] and the author [4]. The
interest of the result is that the question of the existence of symplectic forms
is, on the face of it, a question on the borderline of differential geometry and
differential topology, while the question of the existence of TLP’s is, on the
face of it, pure differential topology. Thus the result is a topological criterion
for the existence of symplectic structures on 4-manifolds.
We will not go into the proofs of this Theorem. In one direction, Gompf’s

construction of a symplectic form on a manifold admitting a Lefschetz pencil
is an extension of Thurston’s construction of symplectic forms on fibre bun-
dles. The proof in the other direction involves some analysis. Roughly, one
considers for large k embeddings ι : X → CPN with ι∗([H]) = k[h] where
H is the standard generator of H2(CPN). One shows that, for any fixed
compatible almost-complex structure on X, the embedding can be chosen to
be “approximately holomorphic”. This can be seen as an extension of the
Kodaira embedding theorem from complex geometry to the almost-complex
case. Then one constructs the pencil by choosing a sufficiently generic CPN−2

and following the procedure described above.

4 “Explicit” description of symplectic four-

manifolds

The discussion of the uniqueness of the TLP corresponding to a sympletic
form is a little more complex, partly because there is a lacuna of a rather
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technical nature in the foundational results proved up to now. The problem
is that in the analytical theory one is lead to the notion of an “asymptotic
sequence” of TLP’s fk, defined for large k. As the theory stands, the precise
definition of this notion would be rather complicated: it would involve the
choice of an almost complex structure and various real parameters measur-
ing roughly “deviation from holomorphicity” and “transversality”. However
we can formulate our results without going into these details, making the
existence of the notion part of the statement.

Theorem 2 Let (X,ω) be a compact symplectic 4-manifold with [ω] integral
and let h be an integer lift of [ω]. There is a preferred non-empty class
A of sequences (fk) of TLP’s on X, defined for large k and where fk has
hyperplane class kh, such that if (f ′k) is another sequence in the class A then
fk is equivalent to f

′
k for large k.

The issue that is left open here is that given some TLP g it is hard to
decide if g is a member of an asymptotic sequence (although it seems quite
likely that it will be except perhaps in some special circumstances).
Next we will describe the “stabilisation operation” due to Auroux and

Katzarkov [1]. Suppose that f is a TLP on X. Recall that this is determined
by a smooth fibre Σ with marked points pα and vanishing cycles Vi ⊂ Σ\{pα}
such that the product of the Dehn twists about the Vi is equal to the element
T (the product of Dehn twists in circles about the pα) in the marked mapping
class group ΓΣ,P . We can think of Σ as having fixed charts around the pα.

Using these charts we form a new surface Σ̂ by taking a second copy of Σ
and performing the connected sum operation at each of the points pα. Thus
the genus of Σ̂ is twice the genus of Σ plus the number of points pα minus
2. We fix a standard embedding j of Σ minus small discs about the pα into
Σ̂. We take four standard points on each of the cylinders making up the
connected sum, giving a set P̂ of 4|P | = (2h)2 marked points in Σ̂. Now we
work in the mapping class group ΓΣ̂,P̂ . Here we have the element T̂ defined

by the product of the Dehn twists in small loops about the points of P̂ and
we also have the element T defined by the twists in the original loops about
the pα, regarded as loops in Σ̂ via the embedding j. Auroux and Katzarkov
write down two explicit and standard collections of loops {Ui}, {Wi} in Σ̂
such that

T̂ = ATB

in ΓΣ̂,P̂ where A is the product of Dehn twists in the Ui and B is the product
of Dehn twists in the Wi. Now suppose that V1, . . . , Vν are loops representing
the monodromy of the pencil f . We can consider them as loops in Σ̂, via the
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embedding j, and we have

T̂ = ADV1 . . . DVνB = DU1 . . . DUpDV1 . . . DVνDW1 . . . DWq .

So the Ui, Vi,Wi are data defining a TLP with fibre Σ̂. We call this TLP
Sq(f).

Proposition 4 The 4-manifold associated to Sq(f) is diffeomorphic to X.

Theorem 3 [1] Let fk be a sequence in A associated to a symplectic 4-
manifold (X,ω). Then for large enough k, the TLP f2k is equivalent to
Sq(fk).

The upshot of the results of the previous section is that in principle ques-
tions about the classification of symplectic 4-manifolds can be translated
into questions about Dehn twists in the mapping class group of surfaces.
Let us spell this out in more detail. Define a primitive compact symplectic
4-manifold to be a triple (X, h, ω) where X is compact 4-manifold, h is a
primitive integral cohomology class and ω is a symplectic form on X with
[ω] = h. We give a description of the equivalence classes (in the obvious
sense) of such primitive symplectic 4-manifolds.
We have explained that a TLP is specified by data consisting of loops

Vi in a marked surface (Σ, P ) satisfying the condition DV1 . . . DVν = T−1.
Now we ask when two such sets of data yield equivalent TLP’s. If we just
consider equivalence over a fixed base we have to consider the loops Vi up to
isotopy and modulo the action of conjugation of the DVi by a single arbitrary
element of ΓΣ,P , i.e. changing each of the Vi to g(Vi) for some g ∈ ΓΣ,P .
If we consider general equivalence we have to bring in the action of the
diffeomorphisms of the 2-sphere with ν marked points, the spherical braid
group. It is convenient to regard the point at infinity as fixed, so we work
with the group of compactly supported diffeomorphisms of the plane with ν
marked points. This is just the Braid group Bν and has standard generators
σi, i = 1, . . . ν − 1. The action of σi on the Dehn twists takes a sequence
DV1 , . . . , DVν to a sequence

DV1 , . . . , DVi+1 , D
∗
Vi
, . . . , DVν

where D∗Vi is the conjugate of DVi :

D−1Vi+1DViDVi+1 .

Note that this action preserves the product, as it should. In other words we
can change a sequence of embedded circles

V1 . . . Vi, Vi+1, . . . , Vν
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to a new sequence
V1 . . . Vi+1V

∗
i . . . Vν ,

where V ∗i is obtained by applying the inverse Dehn twist in Vi+1 to Vi. Now
for each g, ν, p we write Dg,ν,p for the class of finite sequences of isotopy classes
of circles V1, . . . , Vν , in a standard surface of genus g with p marked points,
which satisfy the relation (2). So for each such sequence we can construct
a 4-manifold with a TLP. Let D(0)g,ν,p be the subclass consisting of such data
which define a TLP where the class F is 2r times a primitive class, for some
r. Now let Cg,ν,p be the quotient of D(0)g,ν,p under the action of the braid group
and the mapping class group of (Σ, pα). We have the Auroux-Katzarkov map

Sq : Cg,ν,p → Cĝ,ν̂,p̂,

where ĝ = 2g+ν−1, ν̂ = 4(g+ν−1), p̂ = 4p. Now if we write χ = ν−2(2g−
2), θ = 2g−2−p√

p
then we have, in an obvious notation, χ̂ = χ, θ̂ = θ. For fixed

χ, θ we let Cχ,θ be the direct limit of the maps of sets Sq : Cg,ν,p → Cĝ,p̂,ν̂ with
χ = ν − 2(2g − 2), θ = 2g−2−p√

p
.

Now let Xχ,θ be the set of equivalence classes of data of the form (X,ω, h)
where X is a smooth compact 4-manifold of Euler characteristic χ, h is
a primitive class in H2(X;Z), ω is a symplectic form on X with [ω] the
reduction of h and

K(ω).h
√
h.h

= θ.

Then the results of the previous section amount to

Proposition 5 There is a canonical inclusion of Xχ,θ into Cχ,θ

It seems most likely that this inclusion is in fact a bijection. This issue is
the technical lacuna in the theory referred to above, i.e. the question whether
any TLP, perhaps after stabilisation by the Auroux-Katzarkov construction,
arises as an element of an asymptotic sequence. Assuming this is so we see
that the problem of classifying compact symplectic 4-manifolds (with integral
symplectic form and a chosen lift h) is equivalent to the problem of describing
the set Cχ,θ which is formulated entirely in terms of the mapping class group

5 Problems

The significance of the translation of symplectic 4-manifold theory into prob-
lems about the mapping class group should not be overrated. In practice, the
problem of classifying the appropriate sequences of embedded circles modulo
equivalence seems very intractable and it may be unlikely that much can be
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done without some new idea. The situation is quite similar to that arising
from the description of 3-manifolds via Heegard decompositions where again
the apparent simplicity of the translated problem is largely illusory because
of the complexity of the mapping class group. So far, no progress has been
made in, for example, distinguishing symplectic 4-manifolds via this “combi-
natorial” approach. (Another way of seeing that this approach is unlikely to
be immediately useful is that the classification problem, without restriction,
contains the problem of classifying finitely presented groups, since any group
arises as the fundamental group of a symplectic 4-manifold [7].) Nevertheless,
we can state as an ambitious problem:
Problem 1 Develop techniques to describe the sets Cχ,θ.
As we have said, the real difficulty comes from the action of the braid

group. One can think of this in the following way. Make a directed graph
with one vertex for each element of the mapping class group ΓΣ,P and one
oriented edge joining g and g ◦DV for each isotopy class of embedded circle
V in Σ \ P . Thus a sequence of V1 . . . Vν of the kind we want to consider
is the same thing as an oriented path in the graph from the identity to the
element T . Now for each vertex g and pair V1, V2 we have four edges

(g, gDV1), (gDV1 , gDV1DV2), (g, gDV2), (gDV2 , gDV1DV2),

since DV1DV2 = DV2D
∗
V1
where D∗V1 is the conjugate as before. Now form

a topological space Z by attaching a square to each such collection of four
edges. Thus our braid relation is the relation on edge-paths in Z under which
we are allowed to push a path across a square in the obvious way. This is
somewhat similar to the usual combinatorial description of the homotopy
classes of paths in Z from 1 to T−1—i.e. essentially of π1(Z)—but with the
crucial difference that we are only allowed to consider “positive” paths. It
seems likely that π1(Z) is just the integers: this would correspond to the
fact that the description of TLP’s becomes much simpler if we are allowed to
use both positive and negative Dehn twists and cancel positive and negative
pairs. Of course in formulating things this way we have not really done any-
thing beyond restating the problem, but the point of view might be worth
investigating. One could also try to fit the recent work of Auroux, Munoz
and Presas [2], describing symplectomorphisms in terms of pencils, into the
same mould, perhaps giving a model for the classifying space of the group
of symplectomorphisms of a symplectic 4-manifold. Another related point of
view is to think of a Lefschetz pencil as defining a map from the two sphere
into the compactified moduli space Mg,P , [12]. Again the problem is re-
lated to a standard one, of describing π2(Mg,P ), but the real difficulty comes
from the fact that we have to consider an equivalence defined by homotopies
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through maps which meet the compactification divisor with positive local
intersection numbers.

Notice that the essence of the definition of Cg,p,ν has an entirely algebraic
character. We can make the same definitions given any group, an element
of the centre and a preferred conjugacy class in (in our case the conjugacy
class of Dehn twists). So we can ask the same kinds of questions for other
groups. In the case of finite permutation groups, with the conjugacy class
of transpositions, the problem essentially amounts to the classification of
branched covers and was solved by Hurwitz. The definitions are natural with
respect to group homomorphisms so one approach to studying the question in
the mapping class group might be to consider representations, for example the
permutation representation on spin structures. Or one might consider linear
representations, the obvious ones being the action on homology which takes
one back to the classical homological mondromy. There are also more exotic
representations connected with conformal field theory and Jones invrainats,
as considered by Smith [11].
Alternatively one can consider “high technology” approaches using Floer

homology. This area is developing in a very exciting way through work of
Seidel [10] and others, but so far has not yielded any definite results about
the classification of symplectic 4-manifolds.
Taking a different direction, there are some fundamental issues left open

in the basic theory described above. The main one involves understanding
better the nature of asymptotic sequences which we can now formulate as
Problem 2 Show that the inclusion of Proposition 5 is a bijection. This

will probably require more thought about the analytical and geometric con-
structions which underpin the theory.
Another question is suggested by the Auroux-Katzarkov doubling for-

mula. Suppose we know one element fk0 of an asymptotic sequence. Can we
describe fl for other values of l apart from l = 2rk0? Or perhaps better
Problem 3 Given a topological description of fk0 , fk1 describe fk0+k1 .
A good understanding of this would enable one to drop the rather artificial

introduction of the subclass D(0)g,ν,p in the discussion above.
More generally still, if we have two pencils on a symplectic manifold X

with fibre classes F1, F2 one can ask for a description of a TLP with fibre
F1 + F2 (if such exists). This might give information about the problem of
describing the classes represented by symplectic forms on a fixed 4-manifold.

Rather than trying to use the TLP description to reduce questions to
combinatorics one can attempt to use it as a tool to prove general properties
of symplectic 4-manifolds. So far, this has been more fruitful, giving a new
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approach to Taubes’ results independent of the Seiberg-Witten theory [6],
[13], [9]. There is also a generalisation of the TLP description to other 4-
manifolds [3] and there are many things one could try here; for example
to prove that any 4-manifold has “simple type”. One thing that should be
important to understand is the role of the canonical class K(ω). Using the
Seiberg-Witten theory and pseudo-holomorphic curve techniques, a complete
classification is known of symplectic 4-manifolds with ω.K(ω) < 0, i.e. with
θ < 0 in our notation above. The only examples are the standard ones given
by rational and ruled complex surfaces [8]. It would be interesting to derive
this by the Lefschtez pencil method:
Problem 4 Reproduce the classification of manifolds with ω.K(ω) < 0

by studying the sets Cχ,θ for θ < 0.
There is a network of interesting questions dealing with the borderline

case when K(ω).ω = 0 or, stronger still, K(ω) = 0. In the latter case the
only known examples are the the standard complex tori, certain other torus
bundles over tori and K3 surfaces. So we have:
Problem 5 Analyse the monodromy of Lefschetz fibrations on manifolds

with K(ω) = 0.
Related to this is the general question of understanding the place of com-

plex algebraic surfaces among general symplectic 4-manifolds. One can ask:
Problem 6 Find special features of the monodromy of algebraic surfaces.
There is some good motivation for this coming from at least three direc-

tions

• The problem includes (in principle) the well-known problem of describ-
ing possible fundamental groups of algebraic surfaces.

• One famous constraint is the “hard Lefschetz” property, which has a
well-known translation into the action of the monodromy on homology.

• From the Seiberg-Witten theory we know that there are strong re-
strictions on the basic classes of algebraic surfaces, and these can be
translated into the TLP point of view along the lines of [6], [13].
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