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ABSTRACT

This paper addresses nonphysical reflections encountered in the discretization of wave equations on nonuni-

form grids. Such nonphysical solutions are commonly attributed to spurious modes in the numerical dis-

persion relation. We provide an example of a discretization in which a (nonspurious) physical mode is

spuriously energized at a grid nonuniformity. It is found that, in particular, the box scheme and, in general,

certain discretizations within the class of Runge-Kutta methods, are free from such spurious reflections.
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The central difference discretization of the scalar advection equation suffers from spurious numer-
ical reflections on nonuniform grids, as is well-documented [5, 11, 10]. See especially the excellent
review of Trefethen [9], where the numerical dispersion relation is studied, and where the numer-
ical group velocity is identified as the propagation speed of spurious, reflected waves. Specifically,
it is observed that the numerical dispersion relation for central differencing on a uniform grid sup-
ports, for each frequency ω, two wave numbers κ having opposite group velocities. For a solution
involving only a single frequency, only these wave numbers can be active. Vichnevetsky [11] has
shown that the spurious wave number is excited at an interface between two regions with uniform
but unequal mesh spacing.

Much of the literature assumes the point of view that spurious solution modes and nonphysical
reflections in finite difference methods are unavoidable. Sometimes artificial diffusion is used to
severely damp high frequency modes. In this paper we expound on the phenomenon of spurious
reflections on nonuniform grids. In the first place we see that spurious reflections are not unavoid-
able; any Runge-Kutta method applied to the spatial derivative of the advection equation will
result in a dispersion relation with only a single root. For a subclass of RK methods, we prove
that the dispersion relation is monotone. Second, we show that for higher order derivatives, or
for systems of PDEs, the existence of spurious modes is not a necessary condition for reflections.
The staggered discretization of the wave equation experiences an artificial excitation of physical
solution modes at a change in grid spacing. We show that such spurious coupling of physical
modes is impossible for spatial discretizations within the class of Runge-Kutta methods.

The paper is organized as follows:

In §1 we review the well-documented example of the advection equation, discretized by central
finite differences. Our analysis is essentially a review of that of Vichnevetsky [11]. For this case,
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the reflections generated by a change in grid spacing are a manifestation of spurious modes present
in the dispersion relation.

By contrast, the box scheme has been shown to be free of spurious modes [1]. Consequently, in
§2 we show that the box scheme incurs no reflections for the advection equation on a nonuniform
grid. More generally, any Runge-Kutta method, when used to approximate the spatial derivative
of the advection equation, is free of spurious modes, and we prove that any RK method whose
stability function is a diagonal Padé approximation has a monotone dispersion relation.

In §3 we continue the investigation for the wave equation, using a staggered central discretization,
which has no spurious modes. Nevertheless, reflections are again observed, but here physical
solution modes are spuriously excited at a point of grid refinement.

The box scheme discretization is also reflection-free for the wave equation. The analysis of §4
reveals that the important property of the box scheme in this regard is that the resulting semi-
discretized system, when written as a one-step recursion in space, may be globally decoupled into
recursions for the characteristics.

In §5 we generalize the above observations and identify a class of Runge-Kutta methods, applied
to the spatial derivative of systems of linear hyperbolic PDEs, as being reflection-free.

1. Central difference discretization of the advection equation

In this section and the following, we consider the advection equation

ut + cux = 0 (1.1)

on the real line with uniform propagation speed c > 0. Substituting the plane wave solution
u = exp i(κx − ωt) into (1.1) gives the dispersion relation [12]

ω = cκ, (1.2)

which is the dotted line in the left plot of Figure 1.1. The slope of the dispersion relation is the
group velocity

dω

dκ
= c,

which is constant and positive. Since all wavelengths move with the same velocity, a given signal
propagates to the right unchanged with velocity c.

It is also possible to derive the dispersion relation of a numerical approximation. In general,
numerical methods are dispersive even when the PDE to be discretized is not so, and the numerical
group velocity is a function of the wavelength κ. In this case, an initial signal will change shape
due to dispersion.

Throughout this paper we work with semidiscretizations, i.e. assuming continuity in time. This
primarily saves superfluous notation. Furthermore, any choice of a time integrator would be rather
arbitrary. However, numerical reflections can be introduced as easily through the time integrator
as through the spatial discretization. See the comments in the Conclusions. Since time is taken
continuous, we are mostly interested in the inverse dispersion relation κ(ω) for which the group
velocity is (dκ/dω)−1.

The analytical dispersion relation (1.2) associates one wavenumber κ to each frequency ω. Some
discretizations may associate more wave numbers to a frequency than the analytical solution. In
this case we say the numerical solution admits spurious modes.

The central difference discretization of (1.1) is

u̇j + c
uj+1 − uj−1

xj+1 − xj−1
= 0, (1.3)
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Figure 1.1: Dispersion relations of the exact solution (· · · ), central difference (—) and box (- - -)
schemes, for (left) the advection and (right) wave equations for c ≡ h ≡ 1. The dispersion relation
of the staggered central discretization of the wave equation is also shown (- · -).

and it is well-known that this discretization supports modes with spurious negative group veloc-
ity, which, even if not initially present, will be activated when a signal encounters a change in
grid spacing [11]. To see this, we follow Vichnevetsky’s [11] reasoning and apply a time-Fourier
transformation

uj(t) =

∫ ∞

−∞

e−iωtûj(ω) dω (1.4)

to yield the difference equation

−iωûj + c
ûj+1 − ûj−1

xj+1 − xj−1
= 0.

Let us introduce the equivalent one-step method

Ûj+1 = S(iωh̄j/c)Ûj , Ûj :=

(

ûj

ûj−1

)

, S(z) =

[

2z 1
1 0

]

, (1.5)

where h̄j = (xj+1 − xj−1)/2 and we assume |ωhj/c| < 1. The matrix S(z) can be diagonalized:

S(z) = X(z)D(z)X(z)−1, X(z) =

[

z +
√

1 + z2 z −
√

1 + z2

1 1

]

,

where D(z) is a diagonal matrix containing the eigenvalues of S(z), i.e. the roots of its character-
istic polynomial,

λ±(S(z)) = z ±
√

1 + z2. (1.6)

The dispersion relation is obtained for a uniform grid h̄j ≡ h by inserting the plane wave solution
ûj+1 = eiκhûj in (1.5). Since there are two roots (1.6), there are two solutions

exp(iκ±h) = λ±(S(iωh/c)).

The dispersion relation for (1.3),

ω =
c

h
sin κh,
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is the solid line in the left plot of Figure 1.1. To each |ωh/c| < 1, there correspond two roots κ±

with opposite slope. The group velocity [12] is given by the slope of the dispersion relation,

dω

dκ
= c cos κh,

and this allows us to identify the roots (1.6) corresponding to right and left group velocities:

eiκ+h = R(iωh̄j/c), R(z) = z +
√

1 + z2,

eiκ−h = L(iωh̄j/c), L(z) = z −
√

1 + z2,

and D(z) = diag(R(z), L(z)).

Furthermore, on a uniform grid the j dependence may be dropped from D(iωh/c) and X(iωh/c),
and the recursion (1.5) premultiplied by X(iωh/c)−1 to give two decoupled characteristic solutions

Ĉj+1 = D(iωh/c)Ĉj , Ĉj := X(iωh/c)−1Ûj =

(

r̂j

ˆ̀
j

)

⇒
{

r̂j+1 = R(iωh/c)r̂j

ˆ̀
j+1 = L(iωh/c)ˆ̀j

.

That is, central differencing supports both right and (spurious) left characteristic group velocities,
and on a uniform grid these are everywhere decoupled.

Next consider a grid with two regions of uniform but different spacing (hI 6= hII)

xj =

{

jhI , j < 0
jhII , j ≥ 0

. (1.7)

Away from the interface at x0 = 0, the grid spacing is uniform, and the right and left characteristics
decouple as previously noted. Let us denote Sj = S(iωh̄j/c), Xj = X(iωh̄j/c), and similarly for
Dj , Rj and Lj . Then, applying (1.5) twice across the interface gives

Û1 = S0S−1Û−1,

or

Ĉ1 = X−1
1 X0D0X

−1
0 X−1D−1Ĉ−1, (1.8)

and in general the right and left characteristics couple, resulting in a reflection. Note that (for
this example)

Xj =

[

Rj Lj

1 1

]

.

Denoting RI = R(iωhI/c), etc., let us invert (1.8) to find Ĉ−1

(

r̂−1

ˆ̀
−1

)

=

[

R−1 0
0 L−1

]−1 [

R−1 L−1

1 1

]−1 [

R0 L0

1 1

] [

R0 0
0 L0

]−1 [

R0 L0

1 1

]−1 [

R1 L1

1 1

](

r̂1

ˆ̀
1

)

.

If we assume there is a right-moving wave in {x < 0} and no left-moving wave in {x ≥ 0}, i.e. set
ˆ̀
1 = 0 in the above, then we can solve for the reflection ratio ρ := ˆ̀

−1/r̂−1, to give

ρ = −R−1

L−1

(

R−1(R0 − R1 + L0) − R0L0

L−1(R0 − R1 + L0) − R0L0

)

,

which is nonzero in general. In other words, ˆ̀
−1 will be nonzero even when ˆ̀

1 = 0; the spurious
left characteristic on {x < 0} is excited due to the grid nonuniformity.
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2. Box scheme discretization of the advection equation

The box scheme has recently received a lot of attention in the context of wave equations, due
to the discovery of its multisymplecticity [4, 8]. Ascher & McLachlan have shown that the box
scheme has no spurious modes [1]. Based on the considerations of the previous section, it then
comes as no surprise that the box scheme is free from spurious reflections.

For the advection equation (1.1) the box scheme is

u̇j + u̇j+1

2
+ c

uj+1 − uj

xj+1 − xj
= 0 (2.1)

After time-Fourier transformation (1.4), this scheme gives the recursion (with hj := xj+1 − xj)

ûj+1 = R(
iωhj

c
)ûj , R(z) =

1 + 1
2z

1 − 1
2z

.

The dispersion relation is obtained for a uniform grid by inserting the plane wave solution ûj+1 =
eiκhûj , which gives

eiκh = R(
iωh

c
) ⇒ ωh

2c
=

1 − eiκh

1 + eiκh
,

i.e.,

ω(κ) =
2c

h
tan

κh

2
.

Taking the derivative with respect to κ yields a positive group velocity for all κ, see Figure 1.1
(left). Since the box scheme supports only right-moving groups, there can be no reflections.

What properties of the box scheme prevent the generation of spurious reflections? In the first
place, the box scheme has a compact stencil: it is a one-step method, and therefore has only
one root. Secondly, the dispersion relation is monotone, as implied by the result of Ascher &
McLachlan [1]. In the following we consider a generalization of the box scheme to Runge-Kutta
spatial discretizations.

It is straightforward to apply a Runge-Kutta method (see e.g. [7]) to the spatial derivative of
(1.1). We write

ux = −c−1ut,

and simply apply the RK method as for an initial value problem to obtain the relation between
grid points j and j + 1. For an s-stage RK method with coefficients aik, bi, i, k = 1, . . . , s:

Ui = −c−1∂t(uj + hj

∑s
k=1 aikUk), i = 1, . . . , s

uj+1 = uj + hj

∑s
i=1 biUi.

(2.2)

Substituting the plane wave solution uj(t) = exp i(κhj − ωt) into (2.2) yields the numerical dis-
persion relation

eiκh = R(iωh/c). (2.3)

Here, R(z) is the stability function associated with a Runge-Kutta method having coefficients
b = (bi), A = (aik), i.e.

R(z) = 1 + zbT (I − zA)−1e, (2.4)

where e = (1, . . . , 1)T , see [7].
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For any ω̃ = ωh/c, the right side of (2.3) evaluates to some point in the complex plane. If the
discretization is nondamping, then R(iω̃) is a point on the unit circle, and (2.3) defines a unique
κh ∈ (−π, π] (for methods with damping, it is the real part of κh—also uniquely determined in
this interval—that plays a role in the dispersion relation). In other words, for each ω̃ there can
be only one corresponding κh, so Runge-Kutta methods have only one root.

For the special case in which the stability function R(z) is a diagonal Padé approximation, we
can prove that the dispersion relation is monotone (i.e. the group velocity is always positive for
positive c):

Theorem 2.1 Suppose the stability function R(z) of a Runge-Kutta method is given by the (p, p)-
Padé approximation of the exponential function. If this function is used to discretize the advection
equation in space, then the numerical dispersion relation will be real-valued (that is, the discretiza-
tion is nondiffusive) and monotone. In particular, the group velocity is everywhere positive.

Proof. The diagonal (p, p)-Padé approximation of the exponential function can be written as a
ratio of Hankel functions (see Driver & Temme [6])1

exp(z) ≈ R(z) := − exp(z)
H

(1)
p+1/2(−iz/2)

H
(2)
p+1/2(−iz/2)

. (2.5)

The Hankel functions H
(1)
p+1/2 and H

(2)
p+1/2 are a complex conjugate pair. In terms of modulus

Mp+1/2 and phase θp+1/2 (see [2], 9.2.17)

H
(1)
p+1/2(z) = Mp+1/2(z) exp(iθp+1/2(z)), H

(2)
p+1/2 = Mp+1/2(z) exp(−iθp+1/2(z)),

and (2.5) simplifies, for z = iω̃ = iωh/c, to

R(iω̃) = − exp(iω̃) exp(−2iθp+1/2(ω̃/2)),

from which follows that |R(iω̃)| = 1 and the method is nondiffusive.

Writing exp(iκ̃) = R(iω̃), where κ̃ = κh, the (inverse) dispersion relation becomes

κ̃(ω̃) = ω̃ − 2θp+1/2(ω̃/2) − π.

Furthermore, from [2] 9.2.21 the derivative of the phase is given by

θ′p+1/2(ω̃) =
2

πω̃
M−2

p+1/2(ω̃),

where from [2] 10.1.27,

M2
p+1/2(ω̃) =

2

πω̃

p
∑

k=0

(2p − k)!(2p − 2k)!

k![(p − k)!]2
(2ω̃)2p−2n = 1 +

αp−1

ω̃2
+ · · · α0

ω̃2p
,

and all of the αj are positive. As a result,

θ′p+1/2(ω̃) =
1

1 +
αp−1

ω̃2 + · · · α0

ω̃2p

,

and θ′p+1/2 is symmetric about ω̃ = 0 and increases monotonically from θ′

p+1/2(0) = 0 to θ′p+1/2(+∞) =
1. It follows that the group velocity, whose inverse is

κ̃′(ω̃) = 1 − θ′p+1/2(ω̃/2),
1We thank Nico Temme for suggesting this proof.
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is everywhere positive. �

Therefore, any Runge-Kutta spatial discretization with stability function on the diagonal of the
Padé table will be free of spurious reflections. In particular, the Gauss, Lobatto IIIA and Lobatto
IIIB schemes have this property [7].

At this point it is tempting to conclude that reflections are simply a manifestation of spurious
modes in the numerical dispersion relation of a given discretization. However, the situation is
more complicated when considering systems of PDEs or higher order derivatives. This situation
will be illustrated in the next two sections using the simple example of the wave equation, written
as a system of two first order PDES, and discretized by the staggered central and box schemes,
neither of which has spurious modes in the dispersion relation. Nonetheless, we will see that the
staggered discretization suffers from reflections, whereas the box scheme does not.

3. Staggered central discretization of the wave equation

In this section and the following, we consider the wave equation written as a pair of first order
PDEs

ut = cvx, vt = cux. (3.1)

The exact dispersion relation

ω = ±cκ,

shown as a dotted line on the right plot in Figure 1.1, associates two wave numbers to each
frequency.

Central differencing applied to (3.1) gives

u̇j = c
vj+1 − vj−1

xj+1 − xj−1
, v̇j = c

uj+1 − uj−1

xj+1 − xj−1

The numerical dispersion relation has spurious modes: specifically, there are four wave numbers
κ corresponding to each frequency |ω| < c/h, see Figure 1.1.

Instead we consider an improved discretization, obtained by staggering u and v. Let uj ≈ u(xj)
and vj+1/2 ≈ v(xj + hj/2), where hj = xj+1 − xj . Define the staggered central discretization

u̇j =
c

h̄j
(vj+1/2 − vj−1/2), v̇j+1/2 =

c

hj
(uj+1 − uj), (3.2)

where h̄j = (hj + hj−1)/2. On a uniform grid, h ≡ hj ≡ h̄j , this discretization reduces to the
standard three-point approximation of the Laplacian

üj =
c2

h2
(uj+1 − 2uj + uj−1). (3.3)

The numerical dispersion relation,

ω = ±2c

h
sin2 κh

2
,

is shown in Figure 1.1. It has no spurious roots. Yet, as illustrated in Figure 3.1 on the left,
a numerical simulation of a right-translating pulse, computed using (3.2) on a grid (1.7) with
hI/hII = 7, clearly incurs reflections at the interface x0.

We adapt the analysis of §1. Transforming in time according to (1.4), let Ûj := (ûj , v̂j−1/2)
T . The

recursion analogous to (1.5) is

Ûj+1 = SjÛj , Sj =

[

1 − ω2hjh̄jc
−2 −iωhjc

−1

−iωh̄jc
−1 1

]

. (3.4)
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Figure 3.1: Pulse entering a region of mesh refinement, for (left) staggered central differencing
and (right) box schemes.

The roots of Sj corresponding to the right and left characteristics in the dispersion relation are

Rj = R(iωc−1
√

hj h̄j), R(z) = 1 − 1

2
z2 +

√

z4/4 + z2,

Lj = L(iωc−1
√

hj h̄j), L(z) = 1 − 1

2
z2 −

√

z4/4 + z2,

and Sj can be diagonalized as before (assuming ω2hjh̄j/c
2 < 4)

Sj = XjDjX
−1
j , Xj =

[ ic
ωh̄j

Rj
ic

ωh̄j
Lj

1 1

]

.

where Dj := diag(Rj , Lj).

As before we can define characteristic variables Ĉj := X−1
j Ûj , where Ĉj = (r̂j , ˆ̀

j), and for the grid
(1.7), the recursion (1.8) again holds across the discontinuity in grid spacing. Inverting (1.8) and

setting the incoming left-characteristic to zero, ˆ̀
1 = 0, the reflection ratio due to a right moving

wave at the interface can be computed

ρ = −R−1

L−1

(

h̄0R−1(h̄1R0 − h̄0R1 + h̄1L0) − h̄1h̄−1R0L0

h̄0L−1(h̄1R0 − h̄0R1 + h̄1L0) − h̄1h̄−1R0L0

)

,

which is nonzero in general.

This is a remarkable example. Although the dispersion relation has no spurious modes, there is
a coupling of physical solution modes due to grid nonuniformity, and resulting in the reflections
visible in Figure 3.1. The box scheme discretization of the wave equation is also included in Figure
3.1 on the right. In this case there are no observable reflections. We provide an explanation in
the following section.
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4. Box scheme discretization of the wave equation

Similarly, the analysis of §1 can be adapted for the box scheme discretization of (3.1), namely,

u̇j + u̇j+1

2
= c

vj+1 − vj

hj
,

v̇j + v̇j+1

2
= c

uj+1 − uj

hj
, (4.1)

where again hj = xj+1 − xj .

Applying the time transformation (1.4) to (4.1) gives

−iω

2
(ûj+1 + ûj) =

c

hj
(v̂j+1 − v̂j),

−iω

2
(v̂j+1 + v̂j) =

c

hj
(ûj+1 − ûj).

These relations yield the recursion

Ûj+1 = S(iωhj/c)Ûj , Uj :=

(

ûj

v̂j

)

, S(z) =
1

1 + ( z
2 )2

[

1 − ( z
2 )2 z

z 1 − ( z
2 )2

]

, (4.2)

and the resulting system is diagonalized

S(z) = X(z)D(z)X(z)−1, D(z) =

[

R(z) 0
0 L(z)

]

, X(z) =

[

−1 1
1 1

]

. (4.3)

where R(z) and L(z) are the eigenvalues of S(z). Specifically,

R(z) =
1 + 1

2z

1 − 1
2z

, L(z) =
1 − 1

2z

1 + 1
2z

.

For a uniform grid h ≡ hj , R(iωhj/c) = exp(iκ+h) and L(iωhj/c) = exp(iκ−h) correspond to the
positive and negative branches, respectively, of the dispersion relation

ω = ±2c

h
tan

κh

2
,

which is shown in Figure 1.1. Note that |R(iωhj/c)| = |L(iωhj/c| = 1, i.e. the discretization is
nondamping.

Defining characteristic variables Ĉj = (r̂j , ˆ̀
j)

T , the recursion (4.2) may be diagonalized:

Ĉj := X(iωhj/c)
−1Ûj , Ĉj+1 = D(iωhj/c)Ĉj (4.4)

Again we have both right- and left-moving solutions which evolve independently:

r̂j+1 = R(iωhj/c)r̂j , ˆ̀
j+1 = L(iωhj/c)ˆ̀j . (4.5)

Note however, that the transformation matrix X is independent of hj . Consequently, the trans-
formation (4.4) to characteristic variables can be applied globally even on a nonuniform grid. The
characteristic families (4.5) decouple on the entire grid, independent of grid spacing. For the grid
(1.7) we obtain, across the discontinuity,

r̂1 = R0R−1r̂−1, ˆ̀
1 = L0L−1

ˆ̀
−1.

In this case, setting the left-characteristic to zero ˆ̀
1 = 0 leads to ˆ̀

−1 = 0 and therefore to ρ = 0.

This property (grid independence of X) is not unique to the box scheme, but holds for any Runge-
Kutta method, and is a consequence of the fact that RK methods preserve, under discretization,
the invariant subspaces of linear ODEs. We discuss this further in the next section.
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5. Runge-Kutta spatial discretizations

In this section we consider a general system of N linear, constant coefficient, hyperbolic PDEs

ut + Φux = 0, Φ = ZΛZ−1, Λ = diag(c1, . . . , cN ), (5.1)

for cn ∈ R. Isolating the spatial derivative in (5.1)

ux = −Φ−1ut,

we apply an RK method as for an initial value problem to obtain the relation between grid points
j and j + 1. For an s-stage RK method with coefficients aik, bi:

Ui = −Φ−1∂t(uj + hj

∑s
k=1 aikUk), i = 1, . . . , s

uj+1 = uj + hj

∑s
i=1 biUi.

(5.2)

Letting vj = Z−1uj and Vk = Z−1Uk and pre-multiplying all stages above by Z−1 gives

Vi = −Λ−1∂t(vj + hj

∑s
k=1 aikVk)

vj+1 = vj + hj

∑s
i=1 biVi.

But, since Λ is diagonal, the above formulas decouple. Let R(z) be the stability function (2.4) of
the RK scheme. Then, after time-Fourier transformation (1.4), it holds that

v̂n
j+1 = R(iωhj/cn)v̂n

j , n = 1, . . . , N (5.3)

i.e. the N characteristic families are globally decoupled independent of the mesh. The above
recursion is equivalent to applying the RK method in space to the N scalar PDEs

∂tv
n + cn∂xvn = 0.

That is, discretization followed by diagonalization is equivalent to diagonalization followed by
discretization. Note that the matrix of diagonalization is the matrix of eigenvectors of Φ, and is
independent of h. We summarize the above discussion in the form of a theorem:

Theorem 5.1 Let the linear, constant coefficient, system of N hyperbolic PDEs (5.1) be semi-
discretized over each interval [xj , xj+1] by the s-stage Runge-Kutta method (5.2) with coefficients
aij, bi, i = 1, . . . , s. Then the resulting system of ordinary differential equations decouple into N
semi-discrete, scalar recursions (5.3) corresponding to the same discretization applied directly to
the characteristic families.

If, furthermore, the RK method has stability function a diagonal Padé approximation, then the
group velocities of the individual modes will have the correct signs, and spurious reflections will
not occur.

We note that the above derivation also holds in the case that a different RK method is used in
each grid interval. For example, one may use methods of different order in different parts of the
domain, i.e. p-refinement can be done without reflections.

As a concrete example of a higher order RK discretization, consider (3.1), and let us apply the
symmetric 4th order Lobatto IIIA method (see e.g. [7]), with Butcher array

0 0 0 0
1/2 5/24 1/3 -1/24

1 1/6 2/3 1/6
1/6 2/3 1/6
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Auxiliary variables Uj+1/2 and Vj+1/2 are introduced at the half-intervals xj+1/2, and the Lobatto
method gives the relations

Uj+1/2 = uj + hc−1∂t(
5

24
vj +

1

3
Vj+1/2 −

1

24
vj+1),

Vj+1/2 = vj + hc−1∂t(
5

24
uj +

1

3
Uj+1/2 −

1

24
uj+1),

uj+1 = uj + hc−1∂t(
1

6
vj +

2

3
Vj+1/2 +

1

6
vj+1),

vj+1 = vj + hc−1∂t(
1

6
uj +

2

3
Uj+1/2 +

1

6
uj+1).

These can be further discretized in time, for example by applying the implicit midpoint rule
approximation to u̇j , v̇j , U̇j+1/2, and V̇j+1/2. Doing so results in a linear system for the solution
at the new time level. In general, the system above can also be isolated for the time derivatives
by introducing suitable boundary conditions, writing down the discretization for all j, and solving
a linear system.

The three-point central discretization (3.3) of the second derivative can be written as a one-step
method:

uj+1 = uj + hc−1v̇j+1,

vj+1 = vj + hc−1u̇j ,

but in this form falls in the class of partitioned Runge-Kutta (PRK) methods, for which discretiza-
tion and diagonalization do not commute. The reason for this is clear: the PRK methods rely on
a partitioning of the state variables, where the variables in distinct partitions are discretized by
different methods. Diagonalization will effect a coupling of partitions, such that diagonalization
followed by partitioning will not be equivalent to partitioning followed by diagonalization.

6. Conclusions

We have seen that nonphysical reflections can arise from finite difference discretizations on nonuni-
form grids, even when the method in question has no spurious solutions to its dispersion relation.
Furthermore, we have shown that discretizations which can be written as Runge-Kutta methods
with stability function given by a diagonal Padé approximation, are reflection-free.

In general, spurious reflections may also be encountered in problems with varying coefficients, but
for which the impedance is uniform. For example, the wave equation

ut = c1(x)vx, vt = c2(x)ux

has impedance z(x) =
√

c1(x)/c2(x). If we take c1(x) ≡ α2c2(x), then there should be no
reflections at a point of discontinuous jump in coefficients. Also in this case, the Runge-Kutta
schemes would give no reflections.

The analysis in this paper is for time-continuous solutions. In general, reflections can also be
introduced by a time-integrator if variable step-sizes are used. For example, even with a uniform
spatial grid, the staggered spatial discretization (3.2) will develop a nonphysical reflection if stag-
gered time stepping is used and the stepsize is changed abruptly. An RK spatial discretization
combined with an RK method in time would be reflection-free.

The Runge-Kutta discretizations of §5 can be applied to nonlinear systems as well. To apply an
RK method to nonlinear systems in which the first derivatives cannot be isolated, an approach
such as that used for solving implicit differential algebraic equations may be necessary (see e.g.
Ch. 4 of [3]). Numerical experiments with nonlinear problems suggest that spurious reflections
are absent or at least of much smaller amplitude if Runge-Kutta discretizations are used. This
subject is currently under investigation.
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