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We consider the dynamics of systems in the presence of inertia and colored multiplicative noise. We study
the limit where the particle relaxation time and the correlation time of the noise both tend to zero. We show that
the limiting equation for the particle position depends on the magnitude of the particle relaxation time relative
to the noise correlation time. In particular, the limiting equation should be interpreted either in the Itô or
Stratonovich sense, with a crossover occurring when the two fast-time scales are of comparable magnitude. At
the crossover the limiting stochastic differential equation is neither of Itô nor of Stratonovich type. This means
that, after adiabatic elimination, the governing equations have different drift fields, leading to different physical
behavior depending on the relative magnitude of the two fast-time scales. Our findings are supported by
numerical simulations.
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I. INTRODUCTION

Many problems of physical interest are described in terms
of variables with widely separated characteristic time scales.
Often one is interested in obtaining a coarse-grained, macro-
scopic description for the slow variables alone. The fast vari-
ables are eliminated through a process of adiabatic elimina-
tion. A simple example is the derivation of the
Smoluchowski equation from the full phase space dynamics
(i.e., Kramers’ equation) through elimination of the momen-
tum variables[1]. The formalism is very well developed for
the case of additive noise. However, in the presence of mul-
tiplicative noise it is nota priori clear whether the limiting
equation should be interpreted in the Itô or Stratonovich
sense[2–4]. In particular, if the noise is colored, with short
correlation time, the double limit of eliminating momentum
variables and noise correlation requires careful analysis. This
is the so-called Itô to Stratonovich problem[5]. Despite its
importance, it has not yet been fully analyzed, although, in
[6], a one-dimensional case is treated through an asymptotic
study of the corresponding Fokker-Planck equation. We pro-
vide a systematic analysis of the problem, using both strong
[stochastic-differential-equation-(SDE-) based] and weak
(Fokker-Planck-based) convergence techniques, and incorpo-
rating the work in[6] as a special case. A time discrete prob-
lem in which two time scales resonate and lead to a non-
Stratonovich correction to the stochastic integral in the
continuous limit has been recently analyzed in[7].

Dynamical equations subject to multiplicative noise have
been studied extensively over the last 20 years[8,9], in par-
ticular in connection to noise-induced phase transitions and

to the dynamics of fronts. The starting point for investiga-
tions along these lines is a first-order-in-time(ordinary or
partial) stochastic differential equation in position space sub-
ject to multiplicative white noise. This model leads to very
rich and interesting dynamics, yet it seems that from a physi-
cal and modeling point of view it is often more natural to
consider systems with inertia and subject to colored multipli-
cative noise. To our knowledge, so far there have been a
limited number of investigations in this direction. There is
some work, however, studying the effect of inertia or colored
noise separately. As examples we mention the study of the
effect of non-zero noise correlation time on noise-induced
phase transitions in[10] and the study of the effect of inertia
on the dynamics of fronts which was undertaken in[11];
there it was shown that inertial effects of any magnitude
suppress the external white-noise influence on the velocity of
fronts, essentially because no Stratonovich correction ap-
pears when inertia is present.

In this article we undertake a systematic study of the
problem of adiabatic elimination for systems where inertia as
well as multiplicative noise with finite correlation time is
taken into account. The presence of inertia induces another
characteristic time scale in the system, that of the particle
relaxation time. We show that the limiting equation describ-
ing the dynamics in position space, when both particle relax-
ation time and noise correlation time tend to zero, depends
on the relative magnitude of the two fast-time scales of the
system. In particular, when the particle relaxation time is
large compared to the noise correlation time, then the multi-
plicative noise in the limiting stochastic differential equation
should be interpreted in the sense of Itô. This includes the
case studied in[11] where the noise has zero correlation
time. On the contrary, when the particle relaxation time is
small compared to the correlation time of the noise, then the
limiting SDE should be interpreted in the Stratonovich sense.
This regime includes the noninertial case for which it is well
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known that the limit as the noise correlation time tends to
zero leads to the Stratonovich interpretation of SDE’s—e.g.,
[[12,13], Sec. 10.3]. The transition between Itô and Stra-
tonovich limits occurs when the particle relaxation time and
the noise correlation time are comparable in magnitude. In
this case the limiting equation cannot be interpreted in either
the Itô or the Stratonovich sense and the correction to the Itô
stochastic integral depends on the specific details of the col-
ored noise[see Eq.(12) below]. The important message here
is that the limiting system, after adiabatic elimination, will be
different depending on the ratio of the noise correlation time
to the particle relaxation time. The different limits will have
different physical behavior. For example, the invariant distri-
bution, stability thresholds, and velocities of coherent struc-
tures will depend critically on the ratio of time scales.

We remark that the model that we study in this paper, Eqs.
(4) and (3) below, does not satisfy a fluctuation-dissipation
relation, as this model is not meant to describe systems in
thermal equilibrium. As an example of such a model which
fits within the framework of this work we mention the
Maxey-Riley model[14] for the motion of inertial particles
in a Gaussian velocity field as considered in[15,16]. Systems
with inertia and delta correlated multiplicative noise which
do satisfy the fluctuation-dissipation theorem have been con-
sidered by various authors, e.g.[2,4,17]. Our analysis covers
the adiabatic elimination results reported in[2,4] in the re-
gime where the noise correlation time goes to 0 faster than
the particle relaxation time, the limiting equation being Eq.
(8) below.

We emphasize that the results reported in this paper are
provable and hold for a much wider class of systems than the
ones considered here. For brevity of exposition we will
present only formal calculations in the simplest possible set-
ting. The details of the rigorous strong convergence theorems
are presented in[18].

This paper is organized as follows: in Sec. II we present
the model equations that we will consider, together with the
appropriate rescaling. We derive the limiting equations that
hold in the various parameter regimes and we present simple
heuristics which justify the limits and which are made rigor-
ous in[18]; we also present some numerical experiments that
exemplify our analytical findings. In Sec. III we present
some extensions of the results of Sec. II. In Sec. IV we
present an alternative derivation of the limiting equations
based on asymptotic analysis of the Chapman-Kolmogorov
equation. Finally, Sec. V is devoted to discussion and con-
clusions.

II. ONE-DIMENSIONAL DYNAMICS

Consider the following Langevin equation with multipli-
cative colored noise:

tẍ = fsxdh0sntd − ẋ. s1d

The parametert is the nondimensional relaxation time of the
particle velocity, andfsxd is a sufficiently smooth function
which is bounded, together with its first two derivatives.
Overdots denote differentiation with respect to time. The col-
ored noiseh0std is an Ornstein-Uhlenbeck(OU) process

which—when the initial data is stationary—is a Gaussian
process withkh0stdl=0, kh0stdh0ssdl=sl /2ade−aut−su. It satis-
fies the equation[19]

ḣ0 = − ah0 + Îlj,

wherejstd is the standard white-noise process in one dimen-
sion with kjstdl=0, kjstdjssdl=dst−sd.

We are interested in studying the long-time behavior of
solutions to Eq.(1) in the limit whent as well as the param-
eter 1/n, which controls the relaxation time of the colored
process, tends to zero. To this end, we rescale the nondimen-
sional parameters of the problem ast=ect0, n=n0/ea, where
t0, n0 areOs1d numbers ande!1. We also rescale time by
t=T/eb. The equation of motion becomes, after multiplying
through bye−b,

ec+bt0x9 = fsxd
h0S n0

ea+bTD
eb − x8,

where primes denote differentiation with respect toT. We set
n0=1 for notational simplicity, choseb=1, a=1, c.−1 [20],
and use the original notationt for time to obtain

t0egẍ =
fsxdh0st/e2d

e
− ẋ, s2d

with g=c+1.0. Using the scaling properties of Brownian
motion [[21], p. 104], we can rewriteh0st /e2d=hstd where
the rescaled OU processhstd satisfies the equation

ḣ = −
a

e2h +
Îl

e
j. s3d

In view of Eq. (3) the equation of motion(2) can be written
as

t0egẍ =
fsxdhstd

e
− ẋ. s4d

From the exact solution of Eq.(3) it is easy to conclude that
hstd=Os1d [22]. From Eqs.(3) and (4) it becomes evident
that the particle velocity relaxation time isOsegd, while the
noise correlation time isOse2d. It is therefore expected that
resonance phenomena will appear wheng=2.

We are interested in obtaining the limiting equation for
the particle position ase→0. We use the variation of con-
stants formula to solve for the particle velocity. Lettingẋstd
=ystd, x0=xs0d, andy0=ys0d, we obtain

ẋstd = y0 expS−
t

t0egD +
1

t0egE
0

t

expS−
t − s

t0egD f„xssd…hssd
e

ds.

s5d

From this equation, after an integration by parts, we ob-
tain an integral equation for the particle position:
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xstd = x0 + t0egy0F1 − expS−
t

t0egDG +E
0

t f„xssd…hssd
e

ds

−E
0

t

expS−
t − s

t0egD f„xssd…hssd
e

ds. s6d

Clearly, we havet0egy0s1−e−t/eg
d=Osegd as e→0. Next,

upon using Eq.(5) we can obtain sharp estimates of the
moments of the particle velocityystd= ẋstd [18]. These esti-
mates enable us to conclude that, roughly speaking, the par-
ticle velocity is of orderOse−mins1,g/2dd. Using these estimates
one can show that

E
0

t

expS−
t − s

t0egD f„xssd…hssd
e

ds= Osemaxsg/2,g−1dd.

Thus the contribution to the limiting equations[Eqs. (8),
(11), and (12) below] comes only from the first integral on
the right-hand side of Eq.(6). In order to analyze this term
we integrate by parts once using Itô formula to obtain

E
0

t f„xssd…hssd
e

ds=
Îl

a
E

0

t

f„xssd…jssdds

+
e

a
E

0

t

f8„xssd…yssdhssdds+ Osed.

s7d

We will use the notationJstd for the second term on the
right-hand side of Eq.(7).

We consider first the casegP s0,2d. We use the afore-
mentioned estimates on the moments of the particle velocity,
together with the fact thathstd /e=sÎl /adjstd−se /adḣstd to
show thatJstd=Ose1−g/2d. Thus, for gP s0,2d and e suffi-
ciently small the particle positionxstd satisfies the following
equation:

ẋ =
Îl

a
fsxdj + Osemins1−g/2,g/2dd.

Consequently, ase→0, xstd converges toXstd which sat-
isfies the following Itô SDE:

Ẋ =
Îl

a
fsXdj. s8d

The fact that forg,2 we obtain the limiting equation(8)
can be explained intuitively as follows: in this parameter
regime the particle relaxation time—which is of the order of
eg—is large compared to the relaxation time of the noise and
consequently the particle experiences a rough noise with
practically zero correlation time. This means that forg,2
the OU process is not viewed from the point of view of the
particle as a smooth approximation to white noise and this
results in the limiting equation being an Itô SDE.

Now we proceed with the casegù2. We perform an in-
tegration by parts onJstd in Eq. (7) and use the estimates on
the moments of the particle position, together with standard
tools from stochastic calculus, to obtain

e

a
E

0

t

f8„xssd…yssdhssdds=
1

a
E

0

t

f8„xssd…f„xssd…h2ssdds

− t0eg−1E
0

t

f8„xssd…yssdhssdds

+ Oseg−1d. s9d

Another integration by parts[23] yields

E
0

t

f8„xssd…f„xssd…h2ssdds=
l

2a
E

0

t

f8„xssd…f„xssd…ds+ Osed.

s10d

Furthermore, using the fact that, forgù2, ystdhstd=Ose−1d
we conclude that

E
0

t

f8„xssd…yssdhssdds= Ose−1d,

sincef8sxd is assumed to be bounded. From this we conclude
that the last integral on the right-hand side of Eq.(9) is of
order Oseg−2d. Now it is evident that, forg.2 and for e
sufficiently small, the particle position satisfies the equation

ẋ =
l

2a2 f8sxdfsxd +
Îl

a
fsxdj + Oseminsg−2,1dd.

We take the limite→0 to obtain the limiting Itô SDE for
g.2:

Ẋ =
l

2a2 f8sXdfsXd +
Îl

a
fsXdj. s11d

In this parameter regime the particle relaxation time is small
compared to that of the noise. Consequently, forg.2, the
rescaled OU process is indeed a smooth Gaussian approxi-
mation to white noise giving a Stratonovich correction to the
drift and leading to the Itô SDE(11), in agreement with
standard theorems[[12,13], Sec. 10.3,[24]]: the caseg=`
leads to the case of tracer particles whose relaxation time is
zero and covered precisely by these standard theorems.

Now we consider the caseg=2. We combine Eqs.(9) and
(10) with g=2 to obtain

e

a
E

0

t

f8„xssd…yssdhssdds= − t0eE
0

t

f8„xssd…yssdhssdds

+
l

2a2E
0

t

f8„xssd…fsxssddds+ Osed.

We solve the above equation for the integral on the left-hand
side:

eE
0

t

f8„xssd…yssdhssdds=
l

2as1 + at0dE0

t

f8„xssd…fsxssddds

+ Osed.

Substituting this expression into the last integral in Eq.(7)
we conclude that the particle position, wheng=2 ande is
sufficiently small, is given by the Itô equation
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ẋ =
l

2a2s1 + t0ad
f8sxdfsxd +

Îl

a
fsxdj + Osed.

We pass to the limit to obtain the Itô SDE forg=2:

Ẋ =
l

2a2s1 + t0ad
f8sXdfsXd +

Îl

a
fsXdj. s12d

For the caseg=2 the particle relaxation time is comparable
in magnitude to the noise correlation time and a resonance
mechanism prevails which results in the limiting stochastic
differential equation containing a correction to the drift
which is not the standard Stratonovich one. The drift correc-
tion depends on the friction coefficient of the OU processa
as well as the particle relaxation timet0. We also remark that
we can formally derive the limiting equations(8) and (11)
from Eq. (12) through varyingt0: taking the limitt0→` in
Eq. (12)—which corresponds to the regimeg,2—we ob-
tain the Itô equation(8); on the other hand, the limit
t0→0—which corresponds to the caseg.2—leads to the
Stratonovich equation(11).

From the above discussion it is clear that the rate at which
the particle positionxstd converges to the solutionXstd of the
limiting equation depends crucially ong. In particular, the

convergence rate deteriorates asg tends to 2− and 2+. This is
to be expected, since the limiting equation depends discon-
tinuously ong and has a jump atg=2. Forg=2 the conver-
gence rate is quadratic, when measured in mean square.

We exemplify the above theoretical findings with some
simple numerical experiments for the specific choicefsxd
=x. For this function the limiting equations can be solved
explicitly. We solve numerically the equation of motion(4)
for various values ofg. In Figs. 1(a), 2(a), and 3(a) we
present the difference between the solutions of the limiting
equations and the equations of motion measured in mean
square forg=1, 2, and 3, respectively. In Figs. 1(b), 2(b),
and 3(b) we present sample paths of the solution of the equa-
tion of motion, as well as the pathwise error of the limiting
equation, for the same values ofg. From these graphs we see
that xstd and Xstd are very close—in particular for
gù2—even pathwise and not only in the mean-square sense.
The proof of this fact is based on the calculations presented
in this section together with some nontrivial estimates. The
resulting theorem holds for the case where the colored noise
is infinite dimensional and is presented in[18]. We also ob-
serve that the solution of the equation of motion is smoother
than the solution of the limiting equation. This is to be ex-
pected sinceXstd is a Markovian approximation to the non

FIG. 1. Difference between the solution of the limiting equation and the equation of motion forg=1, for e=0.1.

FIG. 2. Difference between the solution of the limiting equation and the equation of motion forg=2, for e=0.1.
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Markovian processxstd and, hence, less smooth[[25],
Chap. 10].

In Fig. 4 we present the numerically calculated conver-
gence rate showing excellent agreement between the theoret-
ical prediction and numerical observations. The error, when
measured in mean square, is of the formC1eg+C2e2−g when
g,2, C3e2 for g=2, andC4e2+C5e2sg−2d when g.2. Con-
sequently, except forg=2, nonlinear regression analysis is
needed in order to calculate the convergence rate which is
2−g and 2sg−2d for 1øgø2 and 2,gø3, respectively.

III. EXTENSION TO HIGHER DIMENSIONS AND
GENERALIZATIONS

The systematic adiabatic elimination procedure described
in the previous section can be extended in a straightforward
way to cover the case of a particle moving inRd under the
influence of a sufficiently smooth and uniformly bounded
potential and for infinite-dimensional colored multiplicative

noise. Let us consider the following rescaled equations of
motion:

egẍi = −
]Vsxd

]xi
+

f ijsxdh jstd
e

− ẋi, i = 1, . . . ,d.

Here and below double or triple appearance of an index de-
notes summation. The processeshh jstdj j=1

` are a set of inde-
pendent OU processes:

ḣ j = −
a j

e2h j +
Îl j

e
j j, j = 1, . . . ,̀ ,

wherekj jstdl=0, kjistdj jssdl=di jdst−sd. Then, under various
technical conditions on the functionshf ijsxdji,j=1

d,` and the
spectrum of the noisehl jj j=1

` , one can prove that the govern-
ing equations make sense and that, ase→0, the particle
positionxstd converges toXstd which satisfies the following
SDE:

Ẋi =5
−

]Vsxd
]xi

+
Îl j

a j
f i jsXdj j , g , 2 Itô,

−
]Vsxd

]xi
+

l j

2a j
2s1 + t0a jd

]f ijsXd
]Xk

fkjsXd +
Îl j

a j
f i jsXdj j , g = 2,

−
]Vsxd

]xi
+

l j

2a j
2

]f ijsXd
]Xk

fkjsXd +
Îl j

a j
f i jsXdj j , g . 2 Stratonovich.

6
The above limiting equations are derived without any spe-
cific assumptions on the functionshf ijsxdji,j=1

d,` , other than
them being sufficiently smooth and bounded. However, there
are instances where the Stratonovich correction vanishes
identically and the limiting equations are the same indepen-
dently ofg. To see this, we rewrite the drift correction to the
Itô stochastic differential in the form

]f ijsXd
]Xk

fkjsXd =
]„f ijsXdfkjsXd…

]Xk
− f ijsXd

]fkjsXd
]Xk

. s13d

Now, when the noise is isotropic we have thatf ijsXdfkjsXd
~dik and consequently the first term on the right-hand side of
Eq. (13) vanishes. Furthermore, the second term on the right-
hand side of the above equation will also vanish identically

FIG. 3. Difference between the solution of the limiting equation and the equation of motion forg=3, for e=0.1.
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when the noise is divergence free—i.e., when]fkjsXd /]Xk

=0. As an example where this is indeed the case we mention
a model for the motion of an inertial particle moving in a
random incompressible velocity field on the two-dimensional
unit torus: such a model was introduced in[16] and analyzed
in [15,26]. This model comprises Stokes’ law, Eq.(1), for the
motion of the particles and the velocity field is given by an
infinite-dimensional OU process [15], vsx,td
=okk

'fksxdhkstd, where k'=sk2,−k1dT and fksxd, k1,k2

=1, . . . ,̀ are the eigenfunctions of the Laplacian in two di-
mensions with periodic boundary conditions. In this setting,
the limit that we study in this paper corresponds to that of a
rapidly decorrelating fluid when the inertia of the particles
also tends to zero. For this problem, which was our initial
motivation for the undertaking of this work, the isotropy and
incompressibility of the velocity field result in the Stratonov-
ich correction vanishing identically and the limiting equation
being that of Itô for allg.0 [16,18]. In these analyses the
assumptions that one has to impose on the spectrum of the
noise are more severe forgù2, since more integrations by
parts, using Itô formula, are required in the proofs.

IV. ALTERNATIVE DERIVATION OF THE LIMITING
EQUATIONS

In this section we present an alternative derivation of the
limiting equations for the one-dimensional case, based on a
singular perturbation expansion of the associated Chapman-
Kolmogorov equation. The singular perturbation approach is
rigorously justified by general theorems of Kurtz[27]; see
also[28]. A similar derivation, which uses the Fokker-Planck
picture can be found in[6].

We start with Eqs.(3) and (4), which we write as a first-
order system

ẋ =
1

Ît0eg
v,

v̇ =
fsxdh

eÎt0eg
−

v
t0eg ,

ḣ = −
a

e2h +
Îl

e
j. s14d

Note thatvstd differs fromystd= ẋstd by ane-dependent scal-
ing factor. As has already been mentioned, the OU process
hstd satisfieshstd=Os1d. Considering then the equation for
vstd, we observe thatg=2 is a threshold value: forg.2, the
fastest component isvstd which remains exponentially close
to the “slow manifold”vstd<eg/2−1Ît0f(xstd)hstd. Thus, as
in Sec. II, we separate the analysis into the casesg=2, g,2,
andg.2.

A. Caseg=2

For g=2, the Chapman-Kolmogorov equation for
ust ,x,v ,hd takes the form

]u

]t
=

1

e2L0u +
1

e
L1u, s15d

where

L0 = − ah
]

]h
+

l

2

]2

]h2 + S fsxdh
Ît0

−
v
t0
D ]

]v
,

L1 =
v

Ît0

]

]x
.

Here the dynamics inv and h have comparable rates,
whereas the dynamics inx are an order of magnitude slower.

In order to analyze Eq.(15) we expand its solution in a
power series,u=u0+eu1+¯ . Substituting this expansion in
the equation gives a hierarchy of equations:

L0u0 = 0,

L0u1 = − L1u0,

L0u2 = − L1u1 +
]u0

]t
.

The leading-order equationL0u0=0 implies that u0
=u0st ,xd. The next equation in the hierarchy,L0u1=−L1u0,
can be solved explicitly:

u1st,x,v,hd = SÎt0v +
fsxdh

a
D ]u0

]x
+ cst,xd.

The third equationL0u2=−L1u1+]u0/]t is solvable only if
the right-hand side integrates to zero(with respect to bothv
andh) against densitiesr invariant under the Fokker-Planck
operatorL0

* , which implies

]u0

]t
=E

−`

` E
−`

`

L1u1rdvdh. s16d

The only density invariant underL0
* is the Gaussian density

rsv ,hd,Ns0,Sd with covariance matrix

FIG. 4. Convergence rate.
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S =
l

2a1
t0f2sxd
1 + t0a

Ît0fsxd
1 + t0a

Ît0fsxd
1 + t0a

1 2 .

Substitutingr, u1, andL1 into the solvability condition(16)
yields

]u0

]t
=

lt0f2sxd
2as1 + t0ad

]2u0

]x2 +
lfsxd

2a2s1 + t0ad
]

]x
F fsxd

]u0

]x
G

=
l

2a2 f2sxd
]2u0

]x2 +
l

2a2s1 + t0ad
fsxdf8sxd

]u0

]x
.

We identify the latter as the Chapman-Kolmogorov equation
for the reduced Itô SDE

Ẋ =
l

2a2s1 + t0ad
fsXdf8sXd +

Îl

a
fsXdj,

which coincides with Eq.(12).

B. Caseg,2

For g,2, we have fast dynamics in bothv andh, but the
dynamics inh are faster. This calls for a perturbative expan-
sion in two independentsmall parameterse andeg/2.

The Chapman-Kolmogorov equation takes then the form

]u

]t
=

1

e2L0u +
1

eeg/2L1u +
1

egL2u +
1

eg/2L3u, s17d

where

L0 = − ah
]

]h
+

l

2

]2

]h2, L1 =
fsxdh
Ît0

]

]v
,

L2 = −
v
t0

]

]v
, L3 =

v
Ît0

]

]x
.

The solutionu=ust ,x,v ,hd is then expanded in a double
power series

u = u0 + eu1 + e2u2 + ¯ ,

where, for everyk=0,1, . . .,

uk = uk,0 + eg/2uk,1 + eguk,2 + ¯ .

Substituting this double expansion into Eq.(17) we get a
double hierarchy of equations:

0 = L0u0,k, k = 0,1, . . . ,

0 = L1u0,0,

0 = L0u1,0+ L1u0,1,

0 = L0u1,1+ L1u0,2,

0 = L2u0,0,

0 = L1u1,0+ L2u0,1+ L3u0,0,

]u0,0

]t
= L0u2,0+ L1u1,1+ L2u0,2+ L3u0,1,

] = ] .

The first line implies that fork=0,1, . . ., u0,k=u0,kst ,x,vd,
where as the second(or the fifth) line implies that u0,0
=u0,0st ,xd. From the third and fourth lines we deduce that

u1,kst,x,v,hd =
fsxdh
aÎt0

]u0,k+1

]v
+ ckst,x,vd.

The sixth line implies, equating powers ofh, that u1,0 does
not depend onv, and hencec0st ,x,vd=0. Moreover, it fol-
lows that

]u0,1

]v
= Ît0

]u0,0

]x

and

u0,1st,x,vd = Ît0v
]u0,0

]x
+ est,xd.

Finally applying the solvability condition on the seventh line
gives

]u0,0

]t
=

lf2sxd
2a2t0

]2u0,2

]v2 −
v
t0

]u0,2

]v
+ v2]2u0,0

]x2 +
v

Ît0

]e

]x
.

The last step is to observe that this equation requires a solv-
ability condition with respect to thev variables. Defining

G0u =
lf2sxd
2a2t0

]2u

]v2 −
v
t0

]u

]v
,

we have

G0u2,0=
]u0,0

]t
− v2]2u0,0

]x2 −
v

Ît0

]e

]x
,

which is solvable only if the right-hand side integrates to
zero(with respect tov) against densitiesr that are invariant
underG0

*—i.e.,

G0
*r =

lf2sxd
2a2t0

]2r

]v2 +
1

t0

]svrd
]v

= 0.

The only invariant density being

r =Î a2

plf2sxd
expS−

a2h2

lf2sxd
D ,

the solvability condition reduces to

]u0,0

]t
=

lf2sxd
2a2

]2u0,0

]x2 ,

which is the Chapman-Kolmogorov equation for the Itô SDE

Ẋ =
Îl

a
fsXdj.
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C. Caseg.2

For g.2 we have fast dynamics in bothv andh with the
dynamics inv being faster. We will proceed as in the previ-
ous subsection, by expanding the solution in two indepen-
dent small parameterse and eg/2. The case wheng /2 is an
integer, when there is no need for an expansion in two inde-
pendent parameters, can be treated similarly. The basic in-
gredient of the analysis—independently of whetherg /2 is an
integer of not—is the invertibility of the operatorL0: the
condition that the solutions of equationL0f =g should be
smooth, defined for allv in s−` ,`d, ensures that this equa-
tion has a unique solution.

The Chapman-Kolmogorov equation takes the form

]u

]t
=

1

egL0u +
1

eeg/2L1u +
1

eg/2L2u +
1

e2L3u, s18d

where

L0 = −
v
t0

]

]v
, L1 =

fsxdh
Ît0

]

]v
,

L2 =
v

Ît0

]

]x
, L3 = − ah

]

]h
+

l

2

]2

]h2 .

Notice that the ordering of the two last terms on the right-
hand side of Eq.(18) depends ong: for 2,g,4 the term
s1/e2dL3 comes befores1/eg/2dL2u, whereas forg.4 the
ordering is as shown in Eq.(18). However, as the subsequent
analysis will show, the ordering of these two terms does not
have any effect on the form of the limiting equation.

The solutionu=ust ,x,v ,hd is then expanded in a double
power series:

u = u0 + eu1 + e2u2 + ¯ ,

where, for everyk=0,1, . . .,

uk = uk,0 + eg/2uk,1 + euk,2 + ¯ .

Substituting this double expansion into Eq.(18) we get a
double hierarchy of equations[29]:

0 = L0uk,0, k = 0,1,2,

0 = L1u0,0,

0 = L0u0,1+ L2u0,0+ L1u1,0,

0 = L0u1,1+ L2u1,0+ L1u2,0,

0 = L3u0,0,

0 = L3u1,0+ L1u0,1,

]u0,0

]t
= L0u0,2+ L1u1,1+ L2u0,1+ L3u2,0,

A = A . s19d

The first line in Eqs.(19) implies thatuk,0=uk,0sx,h ,td, for
k=0, 1, 2. Now the second line in Eqs.(19) is identically

satisfied. Moreover, the fifth line implies thatu0,0=u0,0sx,td.
The third line in the above equations, sinceu1,0 is indepen-
dent ofv, becomes

L0u0,1= −
v

Ît0

]u0,0

]x
,

from which we conclude that

u0,1= vÎt0
]u0,0

]x
+ c0,1sx,h,td.

Similarly, from the fourth line in Eqs.(19) we obtain

u1,1= vÎt0
]u1,0

]x
+ c1,1sx,h,td.

The equation foru1,0 becomes

L3u1,0= − fsxdh
]u0,0

]x
.

For this equation to be solvable, the right-hand side has to
integrate(with respect toh) to zero against densities that are
invariant under the Fokker-Planck operatorL3

* , which is the
adjoint of L3. The unique invariant density for this operator
is

rshd =Î a

pl
expS−

ah2

l
D .

Now, sincee−`
` hrshddh=0, the solvability condition for the

equation foru1,0 is satisfied and we obtain

u1,0= fsxd
h

a

]u0,0

]x
.

We combine this with the expression foru1,1 that we ob-
tained previously to deduce

u1,1= vÎt0
h

a

]

]x
S fsxd

]u0,0

]x
D .

Let us now consider the last line in Eqs.(19). We use our
findings so far to write this equation in the form

−
v
t0

]u0,2

]v
= −

h2

a
fsxd

]

]x
S fsxd

]u0,0

]x
D − v2]2u0,1

]x2 −
v

Ît0

]c0,1

]x

− L3u2,0+
]u0,0

]t
.

The only way for the above equation to have smooth solu-
tions defined for allv in s−` ,`d is for the constant term inv
to vanish[30]:

−
h2

a
fsxd

]

]x
S fsxd

]u0,0

]x
D − L3u2,0+

]u0,0

]t
= 0.

This is an equation foru2,0 in h. The solvability condition for
this equation reads
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E
−`

` F−
h2

a
fsxd

]

]x
S fsxd

]u0,0

]x
D +

]u0,0

]t
Grshddh = 0,

from which we deduce

]u0,0

]t
=

l

2a2 fsxd
]

]x
S fsxd

]u0,0

]x
D .

This is the Chapman-Kolmogorov equation for the Stra-
tonovich SDE:

Ẋ =
l

2a2 fsXdf8sXd +
l

a
fsXdj,

which is precisely Eq.(11).

V. CONCLUSIONS

We have shown that the interplay between inertial effects
and colored multiplicative noise has a profound effect on the
form of the Smoluchowski equation which describes the dy-
namics of the particle in the limit when particle relaxation
time and noise correlation time tend to zero. In particular, the
multiplicative noise in the limiting equation should either be
interpreted in the Itô or the Stratonovich sense, depending on
whether the noise correlation time tends to zero faster or
slower than the particle relaxation time. Furthermore, when
the two fast time scales of the problem are comparable in

magnitude then a different limiting equation emerges which
cannot be interpreted in either the Itô or the Stratonovich
sense.

The solution of the limiting SDE can have very different
properties depending on the interpretation of the multiplica-
tive noise. For example, the noise can influence the velocity
of kinks in stochastic reaction diffusion equations with mul-
tiplicative noise only when the equation is interpreted in the
Stratonovich sense[11]. Hence, our findings suggest that
great care has to be taken in any adiabatic elimination pro-
cedure for systems where more than one fast time scale is
present to ensure that the limit which correctly captures the
physics in identified.
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