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We consider the dynamics of systems in the presence of inertia and colored multiplicative noise. We study
the limit where the particle relaxation time and the correlation time of the noise both tend to zero. We show that
the limiting equation for the particle position depends on the magnitude of the particle relaxation time relative
to the noise correlation time. In particular, the limiting equation should be interpreted either in the It6 or
Stratonovich sense, with a crossover occurring when the two fast-time scales are of comparable magnitude. At
the crossover the limiting stochastic differential equation is neither of 1té nor of Stratonovich type. This means
that, after adiabatic elimination, the governing equations have different drift fields, leading to different physical
behavior depending on the relative magnitude of the two fast-time scales. Our findings are supported by
numerical simulations.
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I. INTRODUCTION to the dynamics of fronts. The starting point for investiga-
tions along these lines is a first-order-in-tim@rdinary or

) ; . A artial) stochastic differential equation in position space sub-
of variables with widely separated characteristic time scale ect to multiplicative white noise. This model leads to very

Often one is interested in obtaining a coarse-grained, MacrQen and interesting dynamics, yet it seems that from a physi-

scopic description for the slow variables alone. The fast varizal and modeling point of view it is often more natural to

ables are eliminated through a process of adiabatic elimings,qjqer systems with inertia and subject to colored multipli-
tion. A simple example is the derivation of the co4e noise. To our knowledge, so far there have been a
S.mOIUChOWSk,' equation from the .fu!l phase space dynamic§niteq number of investigations in this direction. There is
(ie., Kr:_;tmers equano)nthrou.gh e_I|m|nat|on of the momen- some work, however, studying the effect of inertia or colored
tum variableq1]. The formalism is very well developed for noise separately. As examples we mention the study of the

t_he_ case of Qdd'F'V.e noise. I_—|0\_Never, in the presen_ce_c_)f mu'éffect of non-zero noise correlation time on noise-induced
tiplicative noise it is nota priori clear whether the limiting

) . ) " . phase transitions ifiL0] and the study of the effect of inertia
equation should be interpreted in the It6 or Stratonovic (Lo y

: . o ; n the dynamics of fronts which was undertaken[11];
sensg2—4]. In particular, if th_e Noise IS golo_red, with short yhore it was shown that inertial effects of any magnitude
cor_relatlon time, .the double. limit of .ellmmatmg momentum suppress the external white-noise influence on the velocity of
variables and noise correlation requires careful analysis. Thig s essentially because no Stratonovich correction ap-
is the so-called It6 to Stratonovich probleis]. Despite its ears’when inertia is present
importance, it has not yet been fully analyzed, although, n'_P In this article we undertake a systematic study of the
[61, da o?er—‘dlmensmnal dqaseFlsktl:eatsrj thrkough an as\i'vmpmtl?roblem of adiabatic elimination for systems where inertia as
study of the corresponding Fokker-Planck equation. We progq| ag multiplicative noise with finite correlation time is
vide a systematlc analyS's O.f the problem, using both StrONGhken into account. The presence of inertia induces another
[stochastic-differential-equation'SDE- based and weak

Fokker-Planck-basadt hni di characteristic time scale in the system, that of the particle
(Fokker-Planck-basgdonvergence techniques, and inCorpo- g4y ation time. We show that the limiting equation describ-
rating the work in[6] as a special case. A time discrete prob-

> ) . ing the dynamics in position space, when both particle relax-

lem in Wh'Ch two time scales resonate "%”d. lead 1o a NONgxtion time and noise correlation time tend to zero, depends

Stra;onowch. gorrectlon to the stochastic integral in theon the relative magnitude of the two fast-time scales of the
continuous limit has been recently analyzec[i_m system. In particular, when the particle relaxation time is

eIarge compared to the noise correlation time, then the multi-
licative noise in the limiting stochastic differential equation

hould be interpreted in the sense of 1t6. This includes the
case studied irf11] where the noise has zero correlation

time. On the contrary, when the particle relaxation time is

Many problems of physical interest are described in term

been studied extensively over the last 20 yd8¢9], in par-
ticular in connection to noise-induced phase transitions an

*Electronic address: raz@math.huji.ac.il small compared to the correlation time of the noise, then the
"Electronic address: pavi@maths.warwick.ac.uk limiting SDE should be interpreted in the Stratonovich sense.
*Electronic address: stuart@maths.warwick.ac.uk This regime includes the noninertial case for which it is well
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known that the limit as the noise correlation time tends towhich—when the initial data is stationary—is a Gaussian
zero leads to the Stratonovich interpretation of SDE’s—e.g.process with(7y(t)) =0, (7,(t) 70(S))=(\/ 2a)e sl |t satis-
[[12,13, Sec. 10.3 The transition between It6 and Stra- fies the equatiofil9]

tonovich limits occurs when the particle relaxation time and

the noise correlation time are comparable in magnitude. In Mo=—any+ &gy

this case the limiting equation cannot be interpreted in either

the It or the Stratonovich sense and the correction to the Itvhere&(t) is the standard white-noise process in one dimen-
stochastic integral depends on the specific details of the cokion with (£(t))=0, (£(t)&(s)) = 8(t-s).

ored noisgsee Eq(12) below]. The important message here e are interested in studying the long-time behavior of
is that the limiting system, after adiabatic elimination, will be so|utions to Eq(1) in the limit whenr as well as the param-
different depending on the ratio of the noise correlation timegter 1/, which controls the relaxation time of the colored
to the particle relaxation time. The different limits will have process, tends to zero. To this end, we rescale the nondimen-
different physical behavior. For example, the invariant distri-sjonal parameters of the problem asetr, v= 1,/ €2, where
bution, stability thresholds, and velocities of coherent struc-r ,, are (1) numbers and<1. We also rescale time by

tures will depend critically on the ratio of time scales. t=T/ €. The equation of motion becomes, after multiplying
We remark that the model that we study in this paper, Eqst-hrough bye™®,

(4) and (3) below, does not satisfy a fluctuation-dissipation

relation, as this model is not meant to describe systems in %
thermal equilibrium. As an example of such a model which 770< b )

fits within the framework of this work we mention the €Prx" = f(x) -x,
Maxey-Riley model[14] for the motion of inertial particles e

in a Gaussian velocity field as considered1s,1§. Systems ) ) o )
with inertia and delta correlated multiplicative noise which Where primes denote differentiation with respectTtaVe set

do satisfy the fluctuation-dissipation theorem have been conto=1 for notational simplicity, chose=1,a=1, c>-1[20],
sidered by various authors, e[g,4,17. Our analysis covers and use the original notatidnfor time to obtain
the adiabatic elimination results reported[®4] in the re-

gime where the noise correlation time goes to 0 faster than . f() mo(t/€?) _ 2
the particle relaxation time, the limiting equation being Eg. € ’
(8) below.

We emphasize that the results reported in this paper ar@ith y=c+1>0. Using the scaling properties of Brownian
provable and hold for a much wider class of systems than thgotion [[21], p. 104, we can rewritenq(t/ €)= 7(t) where
ones considered here. For brevity of exposition we willthe rescaled OU procesgt) satisfies the equation
present only formal calculations in the simplest possible set-
ting. The details of the rigorous strong convergence theorems . a VA
are presented ifil8]. n=-ant —¢. 3

This paper is organized as follows: in Sec. Il we present
the moo!el equations that we vinI consi_de_r,_ together_with thgp, view of Eq.(3) the equation of motioii2) can be written
appropriate rescaling. We derive the limiting equations that,q
hold in the various parameter regimes and we present simple
heuristics which justify the limits and which are made rigor- f)pt)
ous in[18]; we also present some numerical experiments that Toe"X = -X
exemplify our analytical findings. In Sec. Il we present

some extensions of the results of Sec. II. In Sec. IV e rom the exact solution of E@3) it is easy to conclude that
present an alternative derivation of the limiting equations ©) y

based on asymptotic analysis of the Chapman-KoImogoroW(t):O(l) [22]. From Egs.(3) and (4) it becomes evident

equation. Finally, Sec. V is devoted to discussion and conth"’_lt the partlc_le ve_:locn_y relaxatl.on time B(e?), while the
clusions. noise correlation time i©(€?). It is therefore expected that

resonance phenomena will appear wher2.
We are interested in obtaining the limiting equation for
Il. ONE-DIMENSIONAL DYNAMICS the particle position ag— 0. We use the variation of con-

Consider the following Langevin equation with multipli- Stants formula to solve for the particle velocity. Lettik@)

(4)

€

cative colored noise: =y(t), X%=x(0), andy,=Yy(0), we obtain
7% = f(X) 7o(vt) — X. 1 _ t 1 [t t-s)\ f(x(s)7(9)
. ) . o Xt)=yoexp———|+——| exp-——|—ds
The parameter is the nondimensional relaxation time of the A To€” €
particle velocity, andf(x) is a sufficiently smooth function 5)

which is bounded, together with its first two derivatives.
Overdots denote differentiation with respect to time. The col- From this equation, after an integration by parts, we ob-
ored noise 7y(t) is an Ornstein-UhlenbeckOU) process tain an integral equation for the particle position:
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t t t
x(t>=xO+roeVyo[1—exr(— %ﬂ+ f ME)’7(S)ds < f P (X(9)y(9 n(S)ds= = J # (x(9)F(x(9) 7A(S)ds
70 0 aJo aJo
t
f p( = 3>f(X(S)7](S) (6) - 7pe” ! J f'(x(9)y(s) n(s)ds
To€ 0
Clearly, we haverye?y,(1-e<)=0(e?) as e—0. Next, +0(e). 9

upon using Eq(5) we can obtain sharp estimates of the aAnother integration by parti23] yields
moments of the particle velocity(t)=X(t) [18]. These esti-

mates enable us to conclude that, roughly speaking, the par- , ) _ A /
ticle velocity is of ordeIO(e‘m'“(1~7’2)). Using these estimates |, FO(EDTX(S) 7 (9)ds= 2a), F(s)i(x(s)ds+ O(e).
one can show that

(10
t -
f exp(— t_s) Mds: O(ema¥2y-1)) Furthermore, using the fact that, for=2, y(t) (t)=0(e ™)
we conclude that
Thus the contribution to the limiting equatiof&gs. (8), t , o
(11), and(12) below] comes only from the first integral on f"(x(s))y(s) n(s)ds= O(e ™),
the right-hand side of Eq6). In order to analyze this term 0
we integrate by parts once using Itd6 formula to obtain sincef’(x) is assumed to be bounded. From this we conclude
¢ -t that the last integral on the right-hand side of E9). is of
f Mds: ﬁf f(x(s))&(9)ds order O(e”?). Now it is evident that, fory>2 and for e
0 € aJg sufficiently small, the particle position satisfies the equation
t ’r'_
+ i f f(x(s)y(s) n(s)ds+ O(e). X= o 21‘ () f(x) + —f(x)§+ O(emn(r-2.)
0
(7) We take the limite— 0 to obtain the limiting 1t6 SDE for
y>2:

We will use the notationJ(t) for the second term on the
right-hand side of Eq(7). : A VA

We consider first the casge (0,2). We use the afore- X:gf'(x)f(x) +;f(x)§- (11)
mentioned estimates on the moments of the particle velocity,
together with the fact thai(t)/e=(y )\/a)g(t) (el @) 5(t) to In this parameter regime the particle relaxation time is small
show thatJ(t)=O(e:™2). Thus, for ye (0,2) and e suffi- ~ compared to that of the noise. Consequently, yor 2, the

ciently small the particle positior(t) satisfies the following rescaled OU process is indeed a smooth Gaussian approxi-
mation to white noise giving a Stratonovich correction to the

equation: c ¢ J ) !
drift and leading to the It6 SDHK11), in agreement with
RN min(=y2.412) standard theoremg12,13, Sec. 10.3]24]]: the casey=»
X= ;f(x)§+ O(e e, leads to the case of tracer particles whose relaxation time is
zero and covered precisely by these standard theorems.
Consequently, as— 0, x(t) converges toX(t) which sat- Now we consider the casg=2. We combine Eqg9) and
isfies the following 1t6 SDE: (10) with y=2 to obtain
NN e[ t
X= %f(x)g. ® - f f'(x(s))y(s) n(s)ds= - e f f'(x(s)y(s) n(s)ds
0 0

The fact that fory<<2 we obtain the limiting equatio(8) ,

can be explained intuitively as follows: in this parameter +ﬁf0f (x(sDf(x(s))ds+ O(e).

regime the particle relaxation time—which is of the order of

e’—is large compared to the relaxation time of the noise andVe solve the above equation for the integral on the left-hand

consequently the particle experiences a rough noise witkide:

practically zero correlation time. This means that forx 2 ¢

the OU process is not viewed from the point of view of the Ef L

particle as a smooth approximation to white noise and this Jo 2a (1 ta

results in the limiting equation being an It6 SDE. +0(e)
Now we proceed with the casg=2. We perform an in- )

tegration by parts od(t) in Eq. (7) and use the estimates on Substituting this expression into the last integral in Ef).

the moments of the particle position, together with standardve conclude that the particle position, wher2 ande is

tools from stochastic calculus, to obtain sufficiently small, is given by the Itd equation

f'(x(s))y(s) n(s)ds= - f ' (x(s))f(x(s))ds
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FIG. 1. Difference between the solution of the limiting equation and the equation of motion=fbr for e=0.1.

—

) VA convergence rate deteriorates)aends to 2 and Z. This is
X=—————F"(X)f(x) + —f(x)§+ O(e). to be expected, since the limiting equation depends discon-
2a°(1 + 7oa) @ tinuously ony and has a jump ag=2. Fory=2 the conver-
We pass to the limit to obtain the It6 SDE for=2: gence rate is quadratic, when measured in mean square.

We exemplify the above theoretical findings with some
simple numerical experiments for the specific chof¢g)
=x. For this function the limiting equations can be solved
explicitly. We solve numerically the equation of motioh)
For the casey=2 the particle relaxation time is comparable for various values ofy. In Figs. ¥a), 2(a), and 3a) we
in magnitude to the noise correlation time and a resonancpresent the difference between the solutions of the limiting
mechanism prevails which results in the limiting stochasticequations and the equations of motion measured in mean
differential equation containing a correction to the drift square fory=1, 2, and 3, respectively. In Figs(k), 2(b),
which is not the standard Stratonovich one. The drift correcand 3b) we present sample paths of the solution of the equa-
tion depends on the friction coefficient of the OU process tion of motion, as well as the pathwise error of the limiting
as well as the particle relaxation timg We also remark that equation, for the same values afFrom these graphs we see
we can formally derive the limiting equationi8) and (11)  that x(t) and X(t) are very close—in particular for
from Eg. (12) through varyingry: taking the limit7y—o° in y=2—even pathwise and not only in the mean-square sense.
Eg. (12—which corresponds to the regime<2—we ob-  The proof of this fact is based on the calculations presented
tain the It6 equation(8); on the other hand, the limit in this section together with some nontrivial estimates. The
70— 0—which corresponds to the case>2—leads to the resulting theorem holds for the case where the colored noise
Stratonovich equatiofll). is infinite dimensional and is presented[i8]. We also ob-

From the above discussion it is clear that the rate at whiclserve that the solution of the equation of motion is smoother
the particle positiorx(t) converges to the solutioX(t) of the  than the solution of the limiting equation. This is to be ex-
limiting equation depends crucially op. In particular, the pected sinceX(t) is a Markovian approximation to the non

—_—

_ , W
X ot m QI+ TIX)E (12

0.1 - - : : 14 : ‘ ‘ ‘
— Error
12} ]
0.08
1‘\\
0.06" 1 osl
\“
0.04f R RN,
\\-
0.4r (N '—/l \\\\ /,\\
0.02" ] N A
0.2} ~- |
0 : : : : o“'l MM&M
0 02 04 08 0.8 1 % 0.2 04 08 0.8 1
a. (| X(t) —=z(t)?) b. sample path

FIG. 2. Difference between the solution of the limiting equation and the equation of motigr=@rfor e=0.1.
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FIG. 3. Difference between the solution of the limiting equation and the equation of motion=f&r for e=0.1.

Markovian processx(t) and, hence, less smootfj25], noise. Let us consider the following rescaled equations of

Chap. 10. motion:

In Fig. 4 we present the numerically calculated conver-
gence rate showing excellent agreement between the theoret- 5 = — V(x) + fi; () 7;(t) -%,i=1,... d.
ical prediction and numerical observations. The error, when X €

measured in mean square, is of the fa@ge”+C,e>~” when _ .
y<2, Csé for y=2, andC,e+Cse2»2 when y> 2. Con- Here and below double or triple appearance of an index de-

sequently, except foy=2, nonlinear regression analysis is N0t€S summation. The procesie@(t)}jzl are a set of inde-
needed in order to calculate the convergence rate which igendent OU processes:
2-vand 2y-2) for 1< y<2 and X y< 3, respectively. —
S SR LS
7]j—_6277j+ gj,J—l,...,oc,
I1l. EXTENSION TO HIGHER DIMENSIONS AND €
GENERALIZATIONS where(§())=0, (£(t)(s))=&; d(t—s). Then, under various
The systematic adiabatic elimination procedure describeéchnical conditions on the function;;(x)}Z, and the
in the previous section can be extended in a straightforwargpectrum of the noisf\;};Z,;, one can prove that the govern-
way to cover the case of a particle movingil under the ing equations make sense and that,eas0, the particle
influence of a sufficiently smooth and uniformly bounded positionx(t) converges tdX(t) which satisfies the following
potential and for infinite-dimensional colored multiplicative SDE:

r —
NV(X) VA R
__()+\_lfij(x)§ja y<2It0,
t?Xi aj
: MN(X) N of(X) W\
X.:<_ + J ] foi(X +_J-fX . :2,
! (9Xi 2aj2(1+7'0aj) (9Xk kj( ) aj IJ( )gj 4
N N, o (X N .
At + —LZJka,m + \—ifij(X)gj, y> 2 Stratonovich.
L (9Xi 2aJ ﬁXk (,I’j
[
The above limiting equations are derived without any spe- 3. (X) A (X) (X)) i(X)
cific assumptions on the functiond;(x)}Z;, other than ;Xk fig(X) = — r?xk] - £ (X) _J_(? . (13

them being sufficiently smooth and bounded. However, there

are instances where the Stratonovich correction vanisheSow, when the noise is isotropic we have thHgtX)f,;(X)
identically and the limiting equations are the same indepens &, and consequently the first term on the right-hand side of
dently of y. To see this, we rewrite the drift correction to the Eq.(13) vanishes. Furthermore, the second term on the right-
It6 stochastic differential in the form hand side of the above equation will also vanish identically

036120-5



KUPFERMAN, PAVLIOTIS, AND STUART PHYSICAL REVIEW E70, 036120(2004)

2 — Numericai 0= f(x)i - L’
1.8H = =+ Theoretical 6\,'7067 7-067
1.61 K
. a AY
1.4 n= 6277+ 65. (14)
12 Note thatv(t) differs fromy(t)=x(t) by ane-dependent scal-
15, ing factor. As has already been mentioned, the OU process
ol N 7(t) satisfiesy(t)=0(1). (_Zonsidering then the equation for
v(t), we observe thay=2 is a threshold value: foy>2, the
0.6- fastest component is(t) which remains exponentially close
04l to the “slow manifold” v(t) = €”?> Y7o (x(1)) 7(t). Thus, as
in Sec. Il, we separate the analysis into the case8, y<2,
0.2r and y>2.
0 15 A. Casey=2
For y=2, the Chapman-Kolmogorov equation for
FIG. 4. Convergence rate. u(t,x,v,7) takes the form
ou_ 1 1
when the noise is divergence free—i.e., whii(X)/ X, o erdr h (15)
=0. As an example where this is indeed the case we mention
a model for the motion of an inertial particle moving in a Where
random incompressible velocity field on the two-dimensional PR f(x) P
. . n v
unit torus: such a model was introduced I6] and analyzed Lo=—ap—+_-—>+ ( — = —)—,
in [15,24. This model comprises Stokes’ law, K@), for the dn 207 V19 To/ v
motion of the particles and the velocity field is given by an
infinite-dimensional ou process [15], v(x,t) L= v J
=3k (X) (1), where ki=(ky,~k))T and @(x), ki, ko Y ax

=1,...  are the eigenfunctions of the Laplacian in two di- o
mensions with periodic boundary conditions. In this setting,1€ré the dynamics i and 7 have comparable rates,
the limit that we study in this paper corresponds to that of avhereas the dynamics inare an order of magnitude slower.
rapidly decorrelating fluid when the inertia of the particles !N order to analyze Eq15) we expand its solution in a
also tends to zero. For this problem, which was our initialPOWer Seriesu=up+eu, + - . Substituting this expansion in
motivation for the undertaking of this work, the isotropy and the €quation gives a hierarchy of equations:
incompressibility of the velocity field result in the Stratonov- LoUp=0,

ich correction vanishing identically and the limiting equation
being that of 1t6 for ally>0 [16,18. In these analyses the

; . Lous = — LU,
assumptions that one has to impose on the spectrum of the o1 1o
noise are more severe fgr=2, since more integrations by p
parts, using Ito formula, are required in the proofs. Loty = — Lyuy + 0

at

The leading-order equatiorLguy=0 implies that u,
=uy(t,x). The next equation in the hierarchiygu;=—LUp,
can be solved explicitly:

In this section we present an alternative derivation of the — (X7,
limiting equations for the one-dimensional case, based on a up(t,x,v,m) = (\’Tov + >— +c(t,%).
singular perturbation expansion of the associated Chapman- x
Kolmogorov equation. The singular perturbation approach isthe third equation_gu,=-L,u;+duy/dt is solvable only if
rigorously justified by general theorems of Kuifi27]; see the right-hand side integrates to z€waith respect to botty
also[28]. A similar derivation, which uses the Fokker-Planck and ») against densitiep invariant under the Fokker-Planck

IV. ALTERNATIVE DERIVATION OF THE LIMITING
EQUATIONS

picture can be found ifi6]. operatorL,, which implies
We start with Eqs(3) and (4), which we write as a first- ) e
U
order system EO :f f L,uipdody. (16)
- 1 v The only density invariant undelrg is the Gaussian density
Vroe? p(v, ) ~N(0,3) with covariance matrix
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of%(X) V’T()f(X)
A 1+ Toxx 1+ Tox
2 = —
al rf(x) 1
1+ 7

Substitutingp, u;, andL, into the solvability condition(16)
yields

g _ A7of2(X) ﬂ+ N(X) d { £ ) ]
a 2a(l +10a) X% 2a2(1 + ma) IX
U A au
£2 0 1(y) 20
ol 007 8 a0 00

PHYSICAL REVIEW E 70, 036120(2004
0=L4uy o+ LoUg 1+ L3Ug o,

&UO,O _
o LoUp o+ LyUg 1+ Lolg o+ L3lg 1,

The first line implies that fokk=0,1,..., Upx=Ugx(t,X,v),
where as the secontbr the fifth) line implies thatug g
=Up ot,x). From the third and fourth lines we deduce that
f(X)775U0k+1

ay To

up(t,Xv,m) = + ¢ (t,xv).

We identify the latter as the Chapman-Kolmogorov equationThe sixth line implies, equating powers gf thatu, o does

for the reduced 1t6 SDE

—
[

M VA
—2¢u+%mﬂmfww-aﬂmg

which coincides with Eq(12).

B. Casey<?2
For y<2, we have fast dynamics in bothand », but the

not depend o, and hencecy(t,x,v)=0. Moreover, it fol-
lows that

(9u0 1_

v

= Vo8
0
X

and

=+ e(t,Xx).
X etx)

’/_
Uo,1(t,X,v) =\ 7qv

dynamics inz are faster. This calls for a perturbative expan-Finally applying the solvability condition on the seventh line

sion in twoindependensmall parameters and €2,

The Chapman-Kolmogorov equation takes then the form

w_1L 1
P 62Lou+ 557/2L1U+ SLou+ y/zL u, (17)
where
L d N& L= f(x)n o
—an_— ] - s
0 7]&7] 2(97/2 ! \/:0 v
Lo b9 v
2 T00-'U, 3 \r',:oax.

The solutionu=u(t,x,v,7) is then expanded in a double
power series

U= U+ eUp + €Uy +
where, for evernk=0,1,...,
U= Ugo+ €U 1 + €Ml p + -+

Substituting this double expansion into Ef7) we get a
double hierarchy of equations:

0=LoUgy k=0,1, ...,
0=L1uo o,
0=Loug ot Lilg 1,
0=Loug 1+ Lyl 2

0= L2U0'o,

gives
5U0’0 )\fz(X) &ZUO’Z v aU0'2 + 2072U0’0 + v oe
= - v .
at 201y W? 1y ax2 \/:0 X

The last step is to observe that this equation requires a solv-
ability condition with respect to the variables. Defining

AM2(X)Pu v du
Gu=-—>—""5-——,
2a°1g e TdU
we have
L?UO 0 &ZUO 0 v Je
G0U2,o:_‘ 2 T T
ot X V’TO(?X

which is solvable only if the right-hand side integrates to
zero(with respect taw) against densitiep that are invariant
underGy—i.e.,

. N2X) Pp

1 4d(vp)
oP = 2a° T (902

v

=0.

70

The only invariant density being

o? P
P=N a2 & _)\fz(x)>'

the solvability condition reduces to

AF2(X) U o
202 ox%’

&UO,O _
7t =

which is the Chapman-Kolmogorov equation for the It6 SDE

’/_
x= R
o
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C. Casey>2 satisfied. Moreover, the fifth line implies thag 5=ug o(X, t).

For '}’>2 we have fast dynam|CS in bothand i with the The third line in the above equations, S|nﬂ:@0 is indepen-
dynamics inv being faster. We will proceed as in the previ- dent ofv, becomes
ous subsection, by expanding the solution in two indepen-

dent small parameters and €”. The case whery/2 is an LoUp 1= — L_M’
integer, when there is no need for an expansion in two inde- ’ V1 X

pendent parameters, can be treated similarly. The basic iril- .

gredient of the analysis—independently of whethé? is an rom which we conclude that
integer of not—is the invertibility of the operatdr,: the _
condition that the solutions of equatidyf=g should be Up,1=v\'Tg
smooth, defined for alb in (—,), ensures that this equa-

tion has a unique solution. . Similarly, from the fourth line in Eqs(19) we obtain
The Chapman-Kolmogorov equation takes the form

=+ Cq 1(X, ).
ox 0,1( 7,t)

—au
u_ 1 1 1 1 Up 1= 03100 +Cpa(X, 7.0).
E - Z/Lou leu + ELZU + 6_2L3U, (18) 11 0 (7)( 11
where The equation fowu,; o becomes
v d f(x)77 d au
Lo=-——, Ly= Latiy 0= = FO) 7—
To OV \ TO v’ IX
For this equation to be solvable, the right-hand side has to
v Jd d N &P . . . o
Ly=—=—, Ly=—ap—+=-—5. integrate(with respect ton) to zero against densities that are
V7o X an 291 invariant under the Fokker-Planck operatgg which is the

Notice that the ordering of the two last terms on the right-2dioint of Ls. The unique invariant density for this operator

hand side of Eq(18) depends ony: for 2<y<4 the term
(1/€’)L; comes beforg1/e”?)L,u, whereas fory>4 the 2
ordering is as shown in E@18). However, as the subsequent p(m) =1/ a exp(- ﬂ)
analysis will show, the ordering of these two terms does not
have any effect on the form of the limiting equation.

The solutionu=u(t,x,v, ) is then expanded in a double
power series:

Now, sincef”, 7p(7)d%=0, the solvability condition for the
equation foru, q is satisfied and we obtain

U=Ug+ €elg+ €Uy + -, 7Moo
oT T et U= f9~

where, for everjk=0,1,..., x*

Ug= U+ €Uy + el + o . We combine this with the expression fag ; that we ob-

tained previously to deduce
Substituting this double expansion into Eg.8) we get a

double hierarchy of equationg9]: —n0d g0
Up1=vNr— | f()—>
O:Loukyo, k:0,1,2, a oX X
0=L Let us now consider the last line in Eq4.9). We use our
=kitoo findings so far to write this equation in the form
0= L0u0,1+ L2u0,0+ Llul,O! 1 (9U0y2 772 Jd aUO 0 192U0,1 v 8C0'1
T a0 T e T T
0=Louy,1+ Loug o+ LUz o, 0 V7o
au0,0
0=L3Ug o, LUz ot .
0=Lguy o+ Lyl 1, The only way for the above equation to have smooth solu-
tions defined for alb in (-0 ,0) is for the constant term in
dUg.0 to vanish[30]:
a =LoUg2t LUy 1+ Lolg 1+ L3z o,
772

(?UOO auOo
) L3 20+ ot —0.

d
-—f f
e (19 a o ( s

The first line in Eqs(19) implies thatuy o=uy o(X, 7,t), for  This is an equation fau, 5 in 7. The solvability condition for
k=0, 1, 2. Now the second line in Eq€l9) is identically  this equation reads
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magnitude then a different limiting equation emerges which
cannot be interpreted in either the 1t6 or the Stratonovich
sense.

The solution of the limiting SDE can have very different
properties depending on the interpretation of the multiplica-
tive noise. For example, the noise can influence the velocity
of kinks in stochastic reaction diffusion equations with mul-
. i tiplicative noise only when the equation is interpreted in the
This is the Chapman-Kolmogorov equation for the Stra-giatonovich sensgll]. Hence, our findings suggest that
tonovich SDE: great care has to be taken in any adiabatic elimination pro-
cedure for systems where more than one fast time scale is
present to ensure that the limit which correctly captures the
physics in identified.

&UO,O

foo [— %zf(x)a%(f(x)%) + 7]/3(77)(177: 0,

from which we deduce

Moo A\ a( au00>
L= () —| fF)—=|.
2ok (X)r?X () Y

at

X< ﬁf(x)f’(x) ¥ %f(x)f,

which is precisely Eq(11).
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