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The process of ‘‘evolutionary diffusion,’’ i.e., reproduction with local mutation but without selection in
a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion
allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a
microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the
large population limit, relates evolution to diffusion, and shows that independent local mutations act as a
diffusion of interacting particles taking larger steps.
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Reproduction involving random mutations seems at first
to lead to a diffusion of the population in type space;
however, the diffusion involved is anomalous in various
ways. A localized configuration that we call a ‘‘peak’’
forms in type space [1,2], and diffuses as a single entity.
The variations in the peak width increase as the peak width
itself with increasing population size, rendering the infinite
population limit meaningless. In contrast, the distribution
of a large number of noninteracting particles undergoing
local diffusion forms a normal distribution with width
increasing in time. We will argue that a completely solv-
able stochastic differential equation model captures the
same dynamics as the microscopic evolution process, and
provides a meaningful description for the large population
limit. We show that although mutations are independent,
the effective diffusion is not.

Much previous work on the clustering of individuals in
type space focuses on the genealogical lineage. Refer-
ence [3] provides a comprehensive discussion and a com-
plete solution from this viewpoint. We imagine a popula-
tion of fixed size N, and in each generation, some
individuals can expect to have many offspring and others
will have none. After some time the whole population will
have the same common ancestor, by the process of
Gamblers ruin [4], and hence must have similar type.

Lineage analysis is a good tool to study high dimen-
sional genotype spaces. The theory of critical branching
processes [5] finds that in high dimensions (d > dc, where
the critical dimension dc � 2 [6]) describing genotype
space, birth or death dynamics are described fully by the
lineages. A lineage remains distinct until all individuals in
it die. However, in low dimensions (d � dc) describing
phenotypes, additional clustering within a distribution oc-
curs. Although sometimes distinct, the clusters in pheno-
type space can merge, and hence clusters are poorly
defined entities. Instead, a careful average over the distri-
bution that we call a ‘‘peak’’ provides a more useful
description. Low dimensional clustering due to birth-death
processes was previously only understood in real space

[7,8], with neutral phenotype clustering addressed indi-
rectly [9,10].

The clustering described above is fluctuation driven.
Fluctuations must be considered in evolution unless the
number of individuals per type is high [11], or there is
strong selection [12]. Otherwise, there is always a region in
type space in which the population is small, and therefore
there is an area of the equilibrium distribution that is
affected by noise. It is (only) in the fluctuations that evolu-
tionary diffusion differs from normal diffusion.

Understanding neutral evolution (i.e., reproduction with
mutation but without selection) is of great importance due
to its wide usage in numerous contexts, from genealogical
trees [13–15], to models of mutations in RNA [16,17].
Neutral models provide good matches with observed
species-area relations and species-abundance distributions
[18].

Microscopic model.—We are interested in the distribu-
tion of types in a population of individuals as they evolve.
For comparison to diffusion, we assume that the total
population N�t� � N is constant, a restraint that can easily
be relaxed. In addition, we use the simplest type space,
namely, the one-dimensional set of integers. However, the
qualitative behavior discussed will remain the same in all
large connected type spaces. The time step for the micro-
scopic processes we consider is as follows:

The diffusion process.—(1) Select an individual i (at
position x), each with probability 1=N. (2) Move to y �
x� 1 each with probability pm=2, or leave at y � x with
probability 1� pm.

The Evolutionary diffusion process (which is the Moran
process [19] for a type distribution).—(1) Select an indi-
vidual i (at position x), each with probability 1=N and
mark for killing. (2) Select an individual j (at position
xj) for reproduction, each with probability 1=N.
(3) Remove individual i, and create an offspring of indi-
vidual j at y � xj with probability �1� pm�, or mutate to
y � xj � 1 each with probability pm=2. Hence the effec-
tive diffusive step is y� x.
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We will refer to properties of the diffusion process with
the subscript D, and the evolutionary diffusion process
with the subscript E, e.g., hxiE�t� for the mean position of
the individuals in the evolution process after t time steps.
Time is best measured in generational time T � t=N. Care
is needed when averaging: we will denote the ensemble
average (over many realizations) of a quantity V by �V�t�,
population average hVi�t� �

PN
i Vi�t�=N, and time aver-

age up to time �: hVi �
P�
t�t0 V�t�=��� t0�. Quantities

calculated from probabilities are by definition ensemble
averages, and so the notation refers to which average is
taken first. See [3] for further details.

The number of individuals on site x is n�x; t�, and the
initial conditions are n�x � 0; t � 0� � N, n�x; t� � 0 for
x � 0. The ensemble average of the population distribution
�n�x; t� is obtained directly from the master equation, and is
identical for both diffusion and evolutionary diffusion:

 

� �n�x; t�
�t

�
pm
2N
52 �n�x; t�: (1)

Hence the (one-point) ensemble average of the two pro-
cesses is the same, but numerical simulations (Fig. 1)
reveal very different behavior. From the figure, we see
that diffusion has followed the ensemble average: a normal
distribution centered on 0, increasing in width with time
[20]. Although we shall see that the evolutionary diffusion
process self-averages over time, the thermodynamic limit
is subtle. In order to understand why, we now split the peak
up into its mean position and standard deviation to create a
‘‘theory of evolutionary peaks.’’

Theory of evolutionary peaks.—We define here concep-
tually simple and solvable processes of evolutionary dif-
fusion and diffusion which we argue captures the essential
features of the microscopic models. The distribution is

described as a ‘‘peak’’: a normal distribution with mean
��t� and standard deviation (i.e., width) w�t�, which vary
as a product of the dynamics. The probability distribution
is continuous, but a discrete ‘‘individual’’ of size 1=N is
moved per time step. Although a given realization of a
peak never resembles a normal distribution, this is a good
model of the evolutionary process because a normal dis-
tribution is a good approximation for the time average of
the peaks in the variable x0 � x���t� (we now drop the
dash notation); see Fig. 2. We hence ‘‘integrate out’’ the
inessential degrees of freedom: the particular distribution
of individuals within the peak.

In the evolutionary process, in each time step a death
will occur at any point x in the distribution p�x�:

 pE�x;� � 0; w� �
e�x

2=2w2�������
2�
p

w
: (2)

The parent position xj will be drawn independently from
the same distribution, and the offspring will be mutated
with probability pm to y� 1. Hence the distribution for
births p�y� is

 

pE�y;�� 0;w� � �1�pm�
e�y

2=2w2�������
2�
p

w

�
pm
2

�
e��y�1�2=2w2�������

2�
p

w
�
e��y�1�2=2w2�������

2�
p

w

�
: (3)

The probability distribution for the diffusion process, mov-
ing a particle at x to x� 1 with probability pm, is written as

 pD�x;� � 0; w� �
e�x

2=2w2�������
2�
p

w
; (4)
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FIG. 1. A snapshot of the distribution after 80 000 generations,
using N � 10 000 and pm � 0:5, comparing evolutionary diffu-
sion (gray line) and diffusion (black line). Diffusion follows a
(noisy) normal distribution whereas evolutionary diffusion is
localized as two clusters, which we combine as a ‘‘peak’’ of
width w and position � undergoing drift.

 

-60 -40 -20 0 20 40 60
Position x′=x-〈x〉

0

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n 

p(
x′)

evolution average
normal distribution
sample distribution

FIG. 2. Time-averaged evolutionary diffusion distribution
(solid line), normal distribution (dashed line) with standard
deviation calculated from theory in Eq. (17). The two agree up
to the second moment. Also shown is a snapshot of the distri-
bution (thin line). (N � 1000, pm � 0:5).
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pD�y;� � 0; w� � �1� pm���y� x�

�
pm
2
���y� x� 1� � ��y� x� 1�	:

(5)

The expectation value of a variable V�x; y� is simply the
integral of V over the probability distribution

 hV�x; y�i �
Z 1
�1

Z 1
�1

V�x; y�p�x�p�y� dy dx: (6)

Equation (6) is simple to calculate because all of our
probabilities are independently normal distributed, or in-
teract trivially via delta functions.

We now perform calculations for the expectation values
of w�t� 1� given w�t�, (working with the variance w2 for
simplicity). We consider the death of individual q at xq,
which is replaced by a birth occurring at yq.

 w2�t� �
1

N

XN
i�1

x2
i �

�XN
i�1

xi
N

�
2
; (7)

 w2�t� 1� �
1

N

XN
i�1

x2
i �

y2
q � x2

q

N
�

�XN
i�1

xi
N
�
yq � xq
N

�
2
;

(8)

 F � �w2�t� � w2�t� 1� � w2�t�

�
y2
q � x

2
q

N
�
y2
q � x

2
q � 2xqyq
N2 : (9)

Here we have defined F � �w2�t� for later use, and usedPN
i�1 xi � 0. These quantities are population averages; we

now ensemble average over the possible births and deaths
by simple integration over Eq. (6). We find that for the
diffusion process, the expected change in the variance is
always positive and independent of w:

 

�hw2
D�x; y�i
�t

�
pm
N

�
1�

1

N

�
: (10)

For the evolution process, the expected change in the
variance is

 

�hw2
E�x; y�i
�t

�
1

N

�
p
 �

2w2
E

N

�
; (11)

where for brevity we have defined p
 � pm � 1=N (as-
sumed positive). This time, the rate of change of the
variance depends on itself, and there is an equilibrium
for which E��w2

E�x; y�	 � 0, at wequil
E �

���������������
Np
=2

p
. The

product Np
 is the average number of mutants per genera-
tion, minus one. By taking the limit �t! 0 in Eq. (11),
and solving by separation of variables, we obtain the
variance hw2

Ei�T� �
Np


2 �1� e
�2T=N�.

We now look at how the peak width w varies in time, by
considering the fluctuations in F � �tw2, the change of

peak size. We are interested in fluctuations around the
equilibrium standard deviation wequil. wequil is not the
mean observed value of w—we will be able to correct it
by considering higher moments. We will now assume a
large population N � 1, and consider the reduced variable
s � �w=

����
N
p
� to identify leading order terms.

 

�F 2 � �F2 � 4s4 � 4pms2=N � � � � 
4w4

N2 : (12)

To represent the particular history of the evolution process
we must write Eq. (11) with an additional noise term������������������

�F2 � �F2
p

��t�  �2w2=N���t�, where ��t� has mean
zero and standard deviation 1 [keeping up to second order
moments in the noise—higher moments are O�1=N�
smaller]. In generational time T � t=N, as �T ! 0 we
obtain

 dw2
E�T� 

�
p
 �

2w2

N

�
dT �

2w2����
N
p dW; (13)

where W�t� is a Wiener process [20]. We solve by finding
the Fokker-Planck equation [21]:
 

@p�w2; T�
@T

�
@��p
 � 2w2=N	p�w2; T��

@�w2�

�
1

2

@2�4w4p�w2; T�=N�

@�w2�2
� 0: (14)

Seeking the steady state solution @p�w2;T�
@T � 0, integration

twice shows that (for this to be a probability distribution)
the unique solution is

 p�w2�d�w2� �

�
Np


2

�
2 1

�w2�3
e�Np


=2w2
d�w2�; (15)

 ) p�w�dw �
�Np
�2

2

1

w5
e�Np


=2w2
dw: (16)

The tail of p�w� is a power law, corresponding to the
existence of multiple (arbitrarily distant) clusters within
the peak. From this we can calculate the arithmetic mean of
the peak width, corrected for noise:

 hwi �
Z 1

0
wp�w� dw �

����������
Np


2

s ����
�
p

2
: (17)

This contrasts with diffusion, as hwDi has no stationary
distribution and follows Eq. (10). The standard deviation of
the peak width is

 �w �
�������������������������
hw2i � hwi2

q
�

������������������������������������
Np
�1� �=4�=2

q
: (18)

Therefore the standard deviation in the peak width in-
creases at the same rate (with N) as the peak width itself.
The 4th and higher moments of the distribution of peak
widths diverge due to the power law tail of p�w�. The
model approximations are confirmed by numerics. Both
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Eq. (13) and w�t� for the ‘‘evolutionary diffusion process’’
defined initially have indistinguishable signals and power
spectra (not shown), and conform to Eq. (17) to within 2%:
for N � 10000 and pm � 1, with 200 runs of 105 gener-
ations, counting w�t� after time 5� 104, we find hwi �
64:34� 2:14 for the evolutionary diffusion process, hwi �
63:17� 1:20 for Eq. (13), comparing with a theoretical
prediction of hwi � 62:66. Equation (13) is fast to simulate
for long times and, as indicated, behaves very similarly to
the microscopic process.

We now examine the behavior of the expected root-
mean-square (rms) displacement of the peak center as
a function of time; direct integration of h��x�2i �
h�xq � yq�2=N2i and substituting the steady state value
hw2

Ei � Np
=2 yields the following step size for evolution:

 �hxirms
E �t� 

������������
p
=N

q
: (19)

From random walk theory [20], the mean (rms) position of
a random walker taking steps of size S after t time steps is
hxirms � S

��
t
p

. Hence

 hxirms
D �T� �

��������
pmt
p

=N �
����������������
pmT=N

q
; (20)

 hxirms
E �T� �

��������������
p
t=N

q
�

���������
p
T

p
: (21)

Hence, in the limit of infinite N the diffusion process
remains stationary, but in generational time the mean
position of the evolutionary diffusion process does a ran-
dom walk of step size independent of the total number of
individuals.

For completeness we could write an equation for��T��

hxi for evolution as: d�E�T��N�1=2
��������������������������
pm�2w2

E�t�
q

dW.
This equation and Eq. (13) describe the system fully and
are completely solved once the peak width reaches equi-
librium probability distribution.

We have described the microscopic behavior of the
evolution of reproducing individuals in a type space, and
approximated it to two coupled solvable stochastic pro-
cesses for the distribution. We find two main differences
between evolutionary diffusion and normal diffusion.
(1) The short range mutation process effectively becomes
a longer ranged [by O�

����
N
p
�] diffusive step. By the central

limit theorem, the standard deviation of the mean position
� taking N steps per generation of size A increases as
A

����
N
p

. In diffusion, the steps are of size A � 1=N, but in
evolution the steps are of size A � 1=

����
N
p

so the conver-
gence is not fast enough to set the location of the peak
center in the infinite population limit. (2) The effective
diffusion is not independent and peaks can form with
fluctuating width w around hwi, following the distribution
in Eq. (16) which has a power law tail. This provides a null
hypothesis to determine if two asexual individuals belong-

ing to different clusters of a phenotype in fact are subject to
the same selection pressure, i.e., members of a single
neutrally evolving population or ‘‘peak,’’ or whether dif-
ferential selection is responsible for the population break-
ing up into separate clusters. In the neutral case all but one
cluster will go extinct. However, if differential selection
acts then several clusters of phenotype may survive in
separate ‘‘niches.’’

In terms of replicator dynamics, our results transparently
explain how a ‘‘species’’ in type space (the peak described
above) is able to maintain its coherence as it performs a
random walk due to mutation prone reproduction. We
found that the distribution of a phenotype in neutral evo-
lution is ‘‘nontrivial’’ regardless of population size. In
terms of diffusion, we describe an interesting type of
particle interaction that allows for clustering.
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