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We fix an arbitrary discrete valuation ring O, with fraction field K, parameter
t, and residue field k. My favourites are the local ring O¢ ;, of a smooth complex
curve C at a point p € C, C{t}, Q[t], F,[t], Fp[[t]], the formal completion Z, of the
integers at p. We will assume that chk # 2,3. k is the separable algebraic closure
of k, K O K an unramified extension of K inducing k, O the integral closure of
O in K. O is a discrete valuation ring with parameter ¢t. We denote A = Spec O,
n = Spec K, 0 = Speck. In what follows all varieties, schemes, morphisms, etc. are
tacitly assumed to be defined over A, unless otherwise indicated. For a scheme Z,
Zy, Zy are its generic and special fiber. A birational map is always assumed to be
biregular when restricted to the generic fibers. A = Spec O, and we denote Z the
base change to A, Z,, Z, its generic and special fiber.

Given a smooth cubic surface Xx C P3., we wish to construct a nice integral
model for Xx. In other words, we seek a nice X C ]P"Zi) with generic fiber X .

1 Definition. a 3-dimensional scheme X over A has ¢DV (compound Du Val)
singularities if, for every singular k-rational point p € X, there is a surface B > p
with Du Val singularities (i.e., rational double points).

2 Definition. Let Xx C P3 be a smooth cubic surface. A subscheme X C P3,
flat over A, is said to be a standard integral model for Xg if X, = Xk and:

2.1 X has isolated ¢DV singularities,

2.2 Xy is (reduced and) k-irreducible.

In other words, X has Gorenstein terminal singularities and, if Pic X = Z,
X — A is a Mori fiber space.

I shall soon describe the flowchart of a program to construct standard models. In
order to do so, I must first discuss elementary transformations of projective space,
and their effect on X.
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3 Elementary transformations of projective space. Let P = P} be n-
dimensional projective space over A, L = Lg; C Py be a d-dimensional linear
subspace, defined over k. If d < n — 1, there is a birational transformation
® =&, : P --» P, centered at L. This is nothing but projection from L, and,
in homogeneous coordinates, ® : (xg: - - :x,) — (twg: -+ 1txg:xg, @ xTp). P
fits into a commutative diagram:

A
N
P-—-"——>pt

where f = bl P : A = Bl P — P is the blow up of L C P. We denote F, G C A
the f and g-exceptional divisors, so that f(G) = Py and g(F) = PJ. Clearly:

(3.1) Ka=f*(Kp)+ (n—d)F
(3.2) =g (Kp+)+ (d+1)G

I will often simply denote K, KT the canonical classes of P, PT.

Let now X C P = IF"Z be a flat subscheme, with X, C P, a smooth cubic
surface. Then Xy C Py is the scheme of zeros of a homogeneous cubic form. In
the following three lemmas we discuss, under different circumstances, the effect, on
X, of elementary transformations of P. The resulting modifications of X will be
used to improve the singularities of X until a distinguished integral model of X, is
reached.

For a variety V' with canonical singularities, e(V') denotes the number of crepant
valuations. n(X) denotes the number of k-irreducibe components of the central
fiber Xj.

4 Lemma. (blowing up the plane) Assume Xg contains a 2-plane L C Py, defined
overk. Let 1 < u < 3 be the generic multiplicity of X along L. Let ® = & : P --»
Pt, Xt =®,X:

4.1 Let v be a valuation, with small center on P, and discrepancy a(v, K+ +

X)) <0. Then:
a(v, Kt + X)) > a(v, K + X + (n— 1)Po)

4.2 If X has canonical singularities, so does Xt , ande(XT) < e(X), ore(X1) =
e(X) and n(XT) < n(X).

Proof. Let Z = f7'X C A. First of all let us prove that:

GXT=Z+3 -G
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Indeed, in a neighborhood of the generic point of L, X is given by an equation
x® +tp(t, ) = 0. The relevant chart for the blow up is t = at’, so z¥ + to(t,z) =
o +at' p(at’, x) = ot (a5 H+ ¢ (¢, x)). Then ¢* X+ =Z+(3—k)+(k—p))G
Z+(3—p)G.

The crucial formulas are:

ff(E+X)=Ka+Z+(p—1)F
G (KT +XT)=Ka+Z—pG

Then:

aW, Kt + XN =aw,Kx+Z —puG) > a(v, Ka+ Z — (u—1)G) =
a(v, K+ X — (u—1)Pp)

which proves 4.1. For the proof of 4.2, the important observation is that:

g*KX+ :Kz—a+G|Z
f*KX :Kz—i—aF|Z

with a™ > 0 and @ > 0. Let v be a valuation, with small center on X, and
discrepancy a(v, Kx+) < 0. Since a™ > 0, v # vg|z, 80 v has small center in Z
also. Then:

02> a(V7KX+> - a(V7KZ _a+G|Z) > a(vaZ +aF|Z) = a(vaX) >0,

which means that all inequalities are equalities. First of all, this says that X
has canonical singularities, and more than that, every valuation which contributes
to e(XT) also contributes to e(X), so e(Xt) < e(X). Also, since a™ > 0,
Cz(v) ¢ Glz. But then Cz(v) C F|z and a = 0. If F|z is a divisor, we have
a valuation, namely vp z, which contributes to e¢(X) but not to e(X™), which
means that e(X 1) < e(X). Otherwise, Z — X is small, but clearly Z — X7 is not
small, so n(X1) < n(X). This case does actually happen (obviously we must have
w=1). 0O

5. Lemma. (blowing up the line) Assume X has generic multilicity 2 < p < 3
along a line L C Py, defined over k. Let ® = & :P -—» P+, X+ =&, X
5.1 Forv as in 4.1:

a(v, K"+ XT) >a(v, K+ X + (p— 2)Py)
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5.2 If X has canonical singularities, so does X, and e(X ™) < e(X).
Proof. The proof is very similar to the proof of 4. Let Z = f-'X. If LT = g(Q),
it is quite clear that u™ = 3 — p, and:
ffK+X)=Ka+Z+(p—-2)F
G KT+ X)) =Ka+Z—(n—1)G

Then:

aW, K"+ XN =a(v, Ka+Z—(u—1)G) > a(v, Ka+Z — (n—2)G) =
=a(lv, K+ X — (n— 2)Py)
which proves 5.1. The proof of 5.2 is, word by word, the same as the proof of 4.2,

with the difference that now, since u > 2 by assumption, Z — X can never be
small, which explains the stronger conclusion. [J

6. Lemma. (blowing up the point) Let p € X be a k-rational point of multiplicity
p=3. Let &=y :P--»PF, Xt =0,X:
6.1 Forv as in 4.1 or 5.1:

a(u,K++X+) 2a(u,K+X)
6.2 Same as 5.2.
Proof. Let Z = f71X. If LT = g(QG), it is quite clear that u™ =3 — u = 0, and:
f(K+X)=Ka+ 2
GK " +XT)=Ks+2Z-G
Then:
av, KT +XT)=a(v,Ka+Z—-G)>a(v,Ka+ Z) =a(v, K + X)

which proves 6.1. The proof of 6.2 is, word by word, the same as the proof of
52. [

We are now ready to describe the (still conjectural) procedure to construct dis-
tinguished integral models of cubic surfaces. Fix a smooth cubic surface X C P3..

7 Flowchart.
7.0 Let X C P =P, be an arbitrary flat closure of X.
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7.1 Does X have generic multiplicity 4 > 2 along a 2-plane L C Py? If yes,
letting ® : X --» X be as in 4, go back to 7.1 with X in place of X. If not, go
to 7.2.

7.2 Does X have generic multiplicity p = 3 along a line L C Py? If yes, letting
®:X --» X' be as in 5, go back to 7.1 with X in place of X. If not, go to 7.3.

7.3 Does X contain a plane? If yes, letting ® : X --» X be as in 4, go back
to 7.1 with X in place of X. If not, go to 7.4.

7.4 Does X have generic multiplicity p = 2 along a line L C Py? If yes, letting
®:X --» Xt be as in 5, go back to 7.1 with X in place of X. If not, go to 7.5.

7.5 Is there a k-rational point p € X of multiplicity 37 If yes, letting & : X --»
X be as in 6, go back to 7.1 with X in place of X. If not, one of the following
is true:

7.5.1 X is a standard model.

7.5.2 X is the exceptional model described below. The exceptional model is
birational to a special index 2 model.

We need to describe the exceptional model, prove the statement in 7.5, and show
that the program terminates. This last part, unfortunately, is still conjectural:

8 Conjecture. The program terminates.

Lemmas 4-6 show that, in some sense, each of the steps in the program im-
proves singularities. Perhaps there is an invariant 6X € O, such that X+ < 6.X,
presumably related to the scheme parametrising lines in X.

9 Description of the exceptional model. X is an exceptional model if the
following 3 conditions hold:

9.1 Xg = Ly + Lo + L3 is union of 3 planes, none of which is defined over k.

9.2 X is singular along C' = (L1 N La) + (L1 N L3) 4+ (L2 N L3).

9.3 Let p € X be the triple point. Then X has multilicity u = 2 at p.

The conditions imply that X has cA; singularities and C' is the A; curve. A
model with terminal singularities can be obtained by blowing up C' and contracting
the strict ransforms of the L;s. The resulting variety is a special indexr 2 model,

and it has three index 2 geometric closed points, permuted by the Galois group
Gal(k/k).

10 Remark. If:

X = (Z ", = o)

k>0

with Fj, = Fy(zo,...,x3) homogeneous of degree 3, 9.2 means that C C (F; = 0),
9.3 means that p € (F» = 0).
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11 Theorem. Let X C P} be a subscheme, flat over O, whose generic fiber X, C
]P’?7 is a smooth cubic surface. Assume the following:

11.1 Xy is k-irreducible. This is equivalent to saying that Xy contains no 2-plane
defined over k, and it implies that Xq is reduced. In particular, X is nonsingular
i codimension one, hence normal.

11.2 X 1s nonsingular at the generic point of every line L C Py defined over k.

11.3 X has multiplicity p < 2 at every k-rational point p € X.

Then either X 1is a standard model, or X s an exceptional model.

Proof. X is reduced and k-irreducible, so X is reduced. If X is not geometrically
irreducible, Xo = Ly + Lo + L3 is the union of three 2-planes L;, none of wich is
defined over k: indeed, if Xo = L 4+ @Q, where L is a 2-plane and Q an irreducible
quadric, the 2-plane L is necessarily defined over k.

I will prove that, unless X is an exceptional model, X has isolated singularities.
The result will then follow from the next lemma 12.

If X is geometrically irreducible, the nonnormal locus of X, if nonempty, con-
sists of a line. Then X has isolated singularities by condition 11.2.

Otherwise, Xg = L1+ Lo+ L3 as above. Let C' = (L1NLa)+(L1NL3)+(LaNL3).
No component of C' is defined over k, for otherwise one of the L;’s is defined over
k: for instance if L1 N Lo is defined over k, L3 is also necessarily defined over k.
This means that either X has isolated singularities, or the singular locus of X is
all of C. But in this case, since p = L1 N Ly N L3 is necessarily k-rational, X is an
exceptional model. [

12 Lemma. Let X be as in 11. Assume:
12.1 X is k-irreducible.
12.2 X has isolated singularities.
12.3 X has multiplicity p < 2 at every k-rational point p € X.
Then X has cDV singularities, i.e., X is a standard model.

The proof of 12 is based on the following elementary lemma and its corollary:

13 Lemma. Let A be affine 3-space with coordinates x,y,z, (p € B) = (0 €
(f(z,y,2) = 0)) C A be the germ at the origin of a normal singularity. Write
f=>" fx with fi, homogeneous of degree k. Then:

13.1 If (fo = 0) is a reduced conic, 0 € B is a Du Val singularity of type A,,, for
some n.

18.2 If fo(x,y,2) = 22 and f3(0,y,2) has 2 distinct roots, 0 € B is a Du Val
singularity of type D,,, for some n.

18.3 If fo(w,y,2) = 22, f3(0,y,2) =y, w22 € fs and 2* &€ f4, 0 € B is a Du
Val singularity of type Fg.
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Proof. This is all well known and easy. As an example, I will outline the proof of
13.3, which is the hardest. Write:

f(z,y,2) =2* + y* + 292(y, 2) + h(z,y, 2)

with go homogeneous of degree 2, 22 € go,h = O(4), 2z* € h. Then:

— @)2 3_é h
f <a:—|—2 +yt =Tt

Changing coordinates x — = + %, f is transformed to

2 5 9
/ — _ Jd2 h/
ff=x"+y 1 +
where b’ = O(4) and, most importantly, z* & h/. Since 22 € go, this implies that
2* € f'. Now the vertices 22, y3, z* generate a face F of the Newton polyhedron for
f’. The Jacobian ideal of 2% +y3+2% is J = (2, 3y?,423) and, if chk # 2,3, O 0/J
has a basis represented by monomials lying entirely below F'. Using [AVGZ], vol. 1,
12.6, theorem on page 174, this implies that f’ is formally equivalent to z2 413+ 2*.
So 0 € B is formally equivalent to an Ejg singularity, hence it is an Eg singularity. [

14 Corollary. Let A be affine j-space with coordinates x,y,z,t, p € X =0 €
(f(z,y,2,t) =0) C A be the germ at the origin of an isolated singularity. Then:
14.1 If (f2 = 0) is a reduced quadric, p € X is a cA,, singularity, for some n.
14.2 If fo = 22 and f3(0,y,2,t) = 0 is not a triple plane, p € X is a cD,
singularity, for some n. O

15. Proof of 12. Let p € X be a singular point. Let p € B be a hyperplane section
of X, general among those passing through p. We will prove that p € B is a Du
Val singularity. Let By = B - Xy, then By is a reduced plane cubic, and p € By is
a singular point. We distinguish five cases:

15.1 By is a nodal rational curve and p € By the node. Then p € X is cA,, by
14.1.

15.2 By is a cuspidal rational curve and p € By the cusp. This is the hardest
case and is treated below.

15.3 By = L + C where L is a line and C a reduced conic. This case does not
occur because in this case Xy must contain a 2-plane defined over k, contradicting
the assumptions.

15.4 Bo = L1 + Lo + L3 and p € By is a double point. Then p € X is cA,, by
14.1.

15.5 By = L1+ Lo+ Lg and p € By is the triple point. This case will be discussed
momentarily.
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I will now discuss cases 15.5, 15.2, in this order. o
In case 15.5, after base change to O, in suitable affine coordinates near p, By is
described by an equation of the form:

f=ay(e+y)+ ) " file,y) =0

k

where fi is a (not necessarily homogeneous) polynomial of degree < 3 in z,y. By
assumption, the origin is a point of multiplicity ¢ < 2. This means that either f;
contains a linear term, or fo contains a constant term. In the second case, p € B is
Du Val by 13.1-2. In the first case, p € B is A,, by 13.1. This completes the proof
in case 15.5.

So from now on we assume to be in case 15.2. We divide the proof in two parts,
according to wether X is normal or not.

15.2.1 X is normal. It is well known that a normal Del Pezzo surface, which
is not the cone over a smooth elliptic curve, has Du Val singularities. In the case
at hand, X is clearly not an elliptic cone (otherwise we would be in case 15.5), so
it must have Du Val singularities, and X is then ¢DV. For sake of completeness,
and since the proof is easy anyway, 1 will provide the argument for cubics. Since
ch k # 2, the cusp p € By is a standard cusp and, after base change to O, in suitable
affine coordinates near p, X is described by an equation of the form:

2? +y° + zg(2,y,2) = 0

where ¢ is a polynomial of degree < 2 in x,y,2. Here By = (z = 0) is a general
hyperplane section containing the origin, so g does not contain any constant or
linear terms, in other words g is homogeneous of degree 2. If g(0,y,2) # 0, p € By
is of type D,, by 13.2. If g(0,y,2) = 0 and zz € g, p € By is of type Eg by 13.3. So
we may assume that ¢(0,y,2) =0 and zz ¢ g. In this case:

Xo=(f =2+ 9* + aza® + Bzzy = 0)

and this surface is singular along the line x = y = 0, a contradiction.

15.2.2X( is not normal. The nonnormal locus of X consists of a line, con-
taining the point p, and X, has a simple cusp along this line. Since chk # 2, the
cusp is a standard cusp and, after base change to O, in suitable affine coordinates
near p, Xg is described by an equation of the form:

2? +y° + 2g2(x,y) = 0

where g is homogeneous of degree 2 (the nonnormal line is the line x = y = 0). If
g2 # 0, p € Xg is of type D,, by 13.2. Otherwise go = 0, which means that X is
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the cone over a cuspidal rational curve and p € X is not the vertex, but lies on
the cuspidal line. Now X itself is described by an equation:

f=a2+ 9> +tfi(x,y,2) + 2 falw,y,2) + 3 fa(x,y,2) +--- =0

where fi is a polynomial of degree < 3. The crucial piece of information here is
that X has isolated singularities, in particular X is nonsingular at the generic point
of t =z = y = 0. This means that z¥ € f; for some k, and necessarily k¥ < 3. We
will see that this implies that X has ¢DV singularities.

15.2.2.1 If f; contains a linear term, or fo a constant term, p € X is cA,, by 14.1.
From now on assume that this is not the case.

15.2.2.2 If, then, f1(0,y, z) contains a quadratic term, or f5(0,y, z) a linear term,
or f3(0,v,2) a constant term, p € X is cD,, by 14.2. From now on assume that this
is not the case.

15.2.2.3 We then have:

f = 'TQ + y3 + tng(xa Y, Z) + th3(y7 Z) + t2h(:13,y, Zat)

where:

a) g2(z,y, 2) is a polynomial of degree < 2 (not necessarily homogeneous), and
92(0,y, z) is homogeneous of degree 3;

b) hs(y, z) is a homogeneous polynomial of degree 3 and 23 € ha;

c) finally, h(x,y, z,t) is a power series vanishing at the origin, and h(0,y, z,t)
contains no linear terms.

Then: . )
f= (a: + %) + 9% + ths(y, 2) + t21 (x,y, 2, t)

tg2

5>, transforms to:

which, via z — = +
2 3 211
2 4+ y° +ths(y,2) +t°h" (z,y, 2, t)

Now, as in the proof of 13.3, tz3 € hs implies (if chk # 2,3) that p € X is a cEg
singularity. [
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