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We fix an arbitrary discrete valuation ring O, with fraction field K, parameter
t, and residue field k. My favourites are the local ring OC,p of a smooth complex
curve C at a point p ∈ C, C{t}, Q[t], Fp[t], Fp[[t]], the formal completion Zp of the
integers at p. We will assume that ch k 6= 2, 3. k is the separable algebraic closure
of k, K ⊃ K an unramified extension of K inducing k, O the integral closure of
O in K. O is a discrete valuation ring with parameter t. We denote ∆ = SpecO,
η = SpecK, 0 = Spec k. In what follows all varieties, schemes, morphisms, etc. are
tacitly assumed to be defined over ∆, unless otherwise indicated. For a scheme Z,
Zη, Z0 are its generic and special fiber. A birational map is always assumed to be
biregular when restricted to the generic fibers. ∆ = SpecO, and we denote Z the
base change to ∆, Zη, Z0 its generic and special fiber.

Given a smooth cubic surface XK ⊂ P3
K , we wish to construct a nice integral

model for XK . In other words, we seek a nice X ⊂ P3
O with generic fiber XK .

1 Definition. a 3-dimensional scheme X over ∆ has cDV (compound Du Val)
singularities if, for every singular k-rational point p ∈ X, there is a surface B 3 p
with Du Val singularities (i.e., rational double points).

2 Definition. Let XK ⊂ P3
K be a smooth cubic surface. A subscheme X ⊂ P3,

flat over ∆, is said to be a standard integral model for XK if Xη = XK and:
2.1 X has isolated cDV singularities,
2.2 X0 is (reduced and) k-irreducible.
In other words, X has Gorenstein terminal singularities and, if PicXK = Z,

X → ∆ is a Mori fiber space.

I shall soon describe the flowchart of a program to construct standard models. In
order to do so, I must first discuss elementary transformations of projective space,
and their effect on X.
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3 Elementary transformations of projective space. Let P = P
n
O be n-

dimensional projective space over ∆, L = Ld ⊂ P0 be a d-dimensional linear
subspace, defined over k. If d ≤ n − 1, there is a birational transformation
Φ = ΦL : P 99K P, centered at L. This is nothing but projection from L, and,
in homogeneous coordinates, Φ : (x0 : · · · : xn)→ (tx0 : · · · : txd : xd1 : · · · : xn). Φ
fits into a commutative diagram:

A
f

���������
g

  AAAAAAAA

P
Φ //_______

P
+

where f = blLP : A = BlLP → P is the blow up of L ⊂ P. We denote F , G ⊂ A
the f and g-exceptional divisors, so that f(G) = P0 and g(F ) = P

+
0 . Clearly:

KA = f∗(KP) + (n− d)F(3.1)

= g∗(KP+) + (d+ 1)G(3.2)

I will often simply denote K,K+ the canonical classes of P,P+.
Let now X ⊂ P = P

3
∆ be a flat subscheme, with Xη ⊂ Pη a smooth cubic

surface. Then X0 ⊂ P0 is the scheme of zeros of a homogeneous cubic form. In
the following three lemmas we discuss, under different circumstances, the effect, on
X, of elementary transformations of P. The resulting modifications of X will be
used to improve the singularities of X until a distinguished integral model of Xη is
reached.

For a variety V with canonical singularities, e(V ) denotes the number of crepant
valuations. n(X) denotes the number of k-irreducibe components of the central
fiber X0.

4 Lemma. (blowing up the plane) Assume X0 contains a 2-plane L ⊂ P0, defined
over k. Let 1 ≤ µ ≤ 3 be the generic multiplicity of X along L. Let Φ = ΦL : P 99K
P

+, X+ = Φ∗X:
4.1 Let ν be a valuation, with small center on P+, and discrepancy a(ν,K+ +

X+) ≤ 0. Then:

a
(
ν,K+ +X+

)
≥ a

(
ν,K +X + (µ− 1)P0

)
4.2 If X has canonical singularities, so does X+, and e(X+) < e(X), or e(X+) =

e(X) and n(X+) < n(X).

Proof. Let Z = f−1
∗ X ⊂ A. First of all let us prove that:

g∗X+ = Z + (3− µ)G
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Indeed, in a neighborhood of the generic point of L, X is given by an equation
xk + tϕ(t, x) = 0. The relevant chart for the blow up is t = xt′, so xk + tϕ(t, x) =
xk+xt′ϕ(xt′, x) = xµ

(
xk−µ+ t′ϕ′(t′, x)

)
. Then g∗X+ = Z+

(
(3−k)+(k−µ)

)
G =

Z + (3− µ)G.
The crucial formulas are:

f∗
(
K +X

)
= KA + Z + (µ− 1)F

g∗
(
K+ +X+

)
= KA + Z − µG

Then:

a(ν,K+ +X+) = a(ν,KA + Z − µG) ≥ a(ν,KA + Z − (µ− 1)G) =

= a(ν,K +X − (µ− 1)P0)

which proves 4.1. For the proof of 4.2, the important observation is that:

g∗KX+ = KZ − a+G|Z
f∗KX = KZ + aF |Z

with a+ > 0 and a ≥ 0. Let ν be a valuation, with small center on X+, and
discrepancy a(ν,KX+) ≤ 0. Since a+ > 0, ν 6= νG|Z , so ν has small center in Z
also. Then:

0 ≥ a(ν,KX+) = a(ν,KZ − a+G|Z) ≥ a(ν,KZ + aF |Z) = a(ν,KX) ≥ 0,

which means that all inequalities are equalities. First of all, this says that X+

has canonical singularities, and more than that, every valuation which contributes
to e(X+) also contributes to e(X), so e(X+) ≤ e(X). Also, since a+ > 0,
CZ(ν) 6⊂ G|Z . But then CZ(ν) ⊂ F |Z and a = 0. If F |Z is a divisor, we have
a valuation, namely νF |Z , which contributes to e(X) but not to e(X+), which
means that e(X+) < e(X). Otherwise, Z → X is small, but clearly Z → X+ is not
small, so n(X+) < n(X). This case does actually happen (obviously we must have
µ = 1). �

5. Lemma. (blowing up the line) Assume X has generic multilicity 2 ≤ µ ≤ 3
along a line L ⊂ P0, defined over k. Let Φ = ΦL : P 99K P+, X+ = Φ∗X:

5.1 For ν as in 4.1:

a
(
ν,K+ +X+

)
≥ a

(
ν,K +X + (µ− 2)P0

)
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5.2 If X has canonical singularities, so does X+, and e(X+) < e(X).

Proof. The proof is very similar to the proof of 4. Let Z = f−1
∗ X. If L+ = g(G),

it is quite clear that µ+ = 3− µ, and:

f∗
(
K +X

)
= KA + Z + (µ− 2)F

g∗
(
K+ +X+

)
= KA + Z − (µ− 1)G

Then:

a(ν,K+ +X+) = a(ν,KA + Z − (µ− 1)G) ≥ a(ν,KA + Z − (µ− 2)G) =

= a(ν,K +X − (µ− 2)P0)

which proves 5.1. The proof of 5.2 is, word by word, the same as the proof of 4.2,
with the difference that now, since µ ≥ 2 by assumption, Z → X can never be
small, which explains the stronger conclusion. �

6. Lemma. (blowing up the point) Let p ∈ X be a k-rational point of multiplicity
µ = 3. Let Φ = Φ{p} : P 99K P+, X+ = Φ∗X:

6.1 For ν as in 4.1 or 5.1:

a
(
ν,K+ +X+

)
≥ a

(
ν,K +X

)
6.2 Same as 5.2.

Proof. Let Z = f−1
∗ X. If L+ = g(G), it is quite clear that µ+ = 3− µ = 0, and:

f∗
(
K +X

)
= KA + Z

g∗
(
K+ +X+

)
= KA + Z −G

Then:

a(ν,K+ +X+) = a(ν,KA + Z −G) ≥ a(ν,KA + Z) = a(ν,K +X)

which proves 6.1. The proof of 6.2 is, word by word, the same as the proof of
5.2. �

We are now ready to describe the (still conjectural) procedure to construct dis-
tinguished integral models of cubic surfaces. Fix a smooth cubic surface XK ⊂ P3

K .

7 Flowchart.
7.0 Let X ⊂ P = P

3
O be an arbitrary flat closure of XK .
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7.1 Does X have generic multiplicity µ ≥ 2 along a 2-plane L ⊂ P0? If yes,
letting Φ : X 99K X+ be as in 4, go back to 7.1 with X+ in place of X. If not, go
to 7.2.

7.2 Does X have generic multiplicity µ = 3 along a line L ⊂ P0? If yes, letting
Φ : X 99K X+ be as in 5, go back to 7.1 with X+ in place of X. If not, go to 7.3.

7.3 Does X0 contain a plane? If yes, letting Φ : X 99K X+ be as in 4, go back
to 7.1 with X+ in place of X. If not, go to 7.4.

7.4 Does X have generic multiplicity µ = 2 along a line L ⊂ P0? If yes, letting
Φ : X 99K X+ be as in 5, go back to 7.1 with X+ in place of X. If not, go to 7.5.

7.5 Is there a k-rational point p ∈ X of multiplicity 3? If yes, letting Φ : X 99K
X+ be as in 6, go back to 7.1 with X+ in place of X. If not, one of the following
is true:

7.5.1 X is a standard model.
7.5.2 X is the exceptional model described below. The exceptional model is

birational to a special index 2 model.

We need to describe the exceptional model, prove the statement in 7.5, and show
that the program terminates. This last part, unfortunately, is still conjectural:

8 Conjecture. The program terminates.

Lemmas 4–6 show that, in some sense, each of the steps in the program im-
proves singularities. Perhaps there is an invariant δX ∈ O, such that δX+ < δX,
presumably related to the scheme parametrising lines in X.

9 Description of the exceptional model. X is an exceptional model if the
following 3 conditions hold:

9.1 X0 = L1 + L2 + L3 is union of 3 planes, none of which is defined over k.
9.2 X is singular along C = (L1 ∩ L2) + (L1 ∩ L3) + (L2 ∩ L3).
9.3 Let p ∈ X0 be the triple point. Then X has multilicity µ = 2 at p.
The conditions imply that X has cA1 singularities and C is the A1 curve. A

model with terminal singularities can be obtained by blowing up C and contracting
the strict ransforms of the Lis. The resulting variety is a special index 2 model,
and it has three index 2 geometric closed points, permuted by the Galois group
Gal(k/k).

10 Remark. If:
X =

(∑
k≥0

tkFk = 0
)

with Fk = Fk(x0, . . . , x3) homogeneous of degree 3, 9.2 means that C ⊂ (F1 = 0),
9.3 means that p 6∈ (F2 = 0).
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11 Theorem. Let X ⊂ P3
O be a subscheme, flat over O, whose generic fiber Xη ⊂

P
3
η is a smooth cubic surface. Assume the following:

11.1 X0 is k-irreducible. This is equivalent to saying that X0 contains no 2-plane
defined over k, and it implies that X0 is reduced. In particular, X is nonsingular
in codimension one, hence normal.

11.2 X is nonsingular at the generic point of every line L ⊂ P0 defined over k.
11.3 X has multiplicity µ ≤ 2 at every k-rational point p ∈ X.
Then either X is a standard model, or X is an exceptional model.

Proof. X0 is reduced and k-irreducible, so X0 is reduced. If X0 is not geometrically
irreducible, X0 = L1 + L2 + L3 is the union of three 2-planes Li, none of wich is
defined over k: indeed, if X0 = L + Q, where L is a 2-plane and Q an irreducible
quadric, the 2-plane L is necessarily defined over k.

I will prove that, unless X is an exceptional model, X has isolated singularities.
The result will then follow from the next lemma 12.

If X0 is geometrically irreducible, the nonnormal locus of X0, if nonempty, con-
sists of a line. Then X has isolated singularities by condition 11.2.

Otherwise, X0 = L1+L2+L3 as above. Let C = (L1∩L2)+(L1∩L3)+(L2∩L3).
No component of C is defined over k, for otherwise one of the Li’s is defined over
k: for instance if L1 ∩ L2 is defined over k, L3 is also necessarily defined over k.
This means that either X has isolated singularities, or the singular locus of X is
all of C. But in this case, since p = L1 ∩ L2 ∩ L3 is necessarily k-rational, X is an
exceptional model. �

12 Lemma. Let X be as in 11. Assume:
12.1 X0 is k-irreducible.
12.2 X has isolated singularities.
12.3 X has multiplicity µ ≤ 2 at every k-rational point p ∈ X.
Then X has cDV singularities, i.e., X is a standard model.

The proof of 12 is based on the following elementary lemma and its corollary:

13 Lemma. Let A be affine 3-space with coordinates x, y, z, (p ∈ B) =
(
0 ∈

(f(x, y, z) = 0)
)
⊂ A be the germ at the origin of a normal singularity. Write

f =
∑
fk with fk homogeneous of degree k. Then:

13.1 If (f2 = 0) is a reduced conic, 0 ∈ B is a Du Val singularity of type An, for
some n.

13.2 If f2(x, y, z) = x2 and f3(0, y, z) has 2 distinct roots, 0 ∈ B is a Du Val
singularity of type Dn, for some n.

13.3 If f2(x, y, z) = x2, f3(0, y, z) = y3, xz2 ∈ f3 and z4 6∈ f4, 0 ∈ B is a Du
Val singularity of type E6.
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Proof. This is all well known and easy. As an example, I will outline the proof of
13.3, which is the hardest. Write:

f(x, y, z) = x2 + y3 + xg2(y, z) + h(x, y, z)

with g2 homogeneous of degree 2, z2 ∈ g2,h = O(4), z4 6∈ h. Then:

f =
(
x+

g2

2

)2

+ y3 − g2
2

4
+ h

Changing coordinates x→ x+ g2
2 , f is transformed to

f ′ = x2 + y3 − g2
2

4
+ h′

where h′ = O(4) and, most importantly, z4 6∈ h′. Since z2 ∈ g2, this implies that
z4 ∈ f ′. Now the vertices x2, y3, z4 generate a face F of the Newton polyhedron for
f ′. The Jacobian ideal of x2+y3+z4 is J = (2x, 3y2, 4z3) and, if ch k 6= 2, 3, OA,0/J
has a basis represented by monomials lying entirely below F . Using [AVGZ], vol. 1,
12.6, theorem on page 174, this implies that f ′ is formally equivalent to x2 +y3 +z4.
So 0 ∈ B is formally equivalent to an E6 singularity, hence it is an E6 singularity. �

14 Corollary. Let A be affine 4-space with coordinates x, y, z, t, p ∈ X = 0 ∈
(f(x, y, z, t) = 0) ⊂ A be the germ at the origin of an isolated singularity. Then:

14.1 If (f2 = 0) is a reduced quadric, p ∈ X is a cAn singularity, for some n.
14.2 If f2 = x2 and f3(0, y, z, t) = 0 is not a triple plane, p ∈ X is a cDn

singularity, for some n. �

15. Proof of 12. Let p ∈ X be a singular point. Let p ∈ B be a hyperplane section
of X, general among those passing through p. We will prove that p ∈ B is a Du
Val singularity. Let B0 = B ·X0, then B0 is a reduced plane cubic, and p ∈ B0 is
a singular point. We distinguish five cases:

15.1 B0 is a nodal rational curve and p ∈ B0 the node. Then p ∈ X is cAn by
14.1.

15.2 B0 is a cuspidal rational curve and p ∈ B0 the cusp. This is the hardest
case and is treated below.

15.3 B0 = L + C where L is a line and C a reduced conic. This case does not
occur because in this case X0 must contain a 2-plane defined over k, contradicting
the assumptions.

15.4 B0 = L1 + L2 + L3 and p ∈ B0 is a double point. Then p ∈ X is cAn by
14.1.

15.5 B0 = L1 +L2 +L3 and p ∈ B0 is the triple point. This case will be discussed
momentarily.
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I will now discuss cases 15.5, 15.2, in this order.
In case 15.5, after base change to O, in suitable affine coordinates near p, B0 is

described by an equation of the form:

f = xy(x+ y) +
∑
k

tkfk(x, y) = 0

where fk is a (not necessarily homogeneous) polynomial of degree ≤ 3 in x, y. By
assumption, the origin is a point of multiplicity µ ≤ 2. This means that either f1

contains a linear term, or f2 contains a constant term. In the second case, p ∈ B is
Du Val by 13.1–2. In the first case, p ∈ B is An by 13.1. This completes the proof
in case 15.5.

So from now on we assume to be in case 15.2. We divide the proof in two parts,
according to wether X0 is normal or not.

15.2.1 X0 is normal. It is well known that a normal Del Pezzo surface, which
is not the cone over a smooth elliptic curve, has Du Val singularities. In the case
at hand, X0 is clearly not an elliptic cone (otherwise we would be in case 15.5), so
it must have Du Val singularities, and X is then cDV . For sake of completeness,
and since the proof is easy anyway, I will provide the argument for cubics. Since
ch k 6= 2, the cusp p ∈ B0 is a standard cusp and, after base change to O, in suitable
affine coordinates near p, X0 is described by an equation of the form:

x2 + y3 + zg(x, y, z) = 0

where g is a polynomial of degree ≤ 2 in x, y, z. Here B0 = (z = 0) is a general
hyperplane section containing the origin, so g does not contain any constant or
linear terms, in other words g is homogeneous of degree 2. If g(0, y, z) 6= 0, p ∈ B0

is of type Dn by 13.2. If g(0, y, z) = 0 and xz ∈ g, p ∈ B0 is of type E6 by 13.3. So
we may assume that g(0, y, z) = 0 and xz 6∈ g. In this case:

X0 = (f = x2 + y3 + αzx2 + βzxy = 0)

and this surface is singular along the line x = y = 0, a contradiction.
15.2.2X0 is not normal. The nonnormal locus of X0 consists of a line, con-

taining the point p, and X0 has a simple cusp along this line. Since ch k 6= 2, the
cusp is a standard cusp and, after base change to O, in suitable affine coordinates
near p, X0 is described by an equation of the form:

x2 + y3 + zg2(x, y) = 0

where g2 is homogeneous of degree 2 (the nonnormal line is the line x = y = 0). If
g2 6= 0, p ∈ X0 is of type Dn by 13.2. Otherwise g2 = 0, which means that X0 is
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the cone over a cuspidal rational curve and p ∈ X0 is not the vertex, but lies on
the cuspidal line. Now X itself is described by an equation:

f = x2 + y3 + tf1(x, y, z) + t2f2(x, y, z) + t3f3(x, y, z) + · · · = 0

where fk is a polynomial of degree ≤ 3. The crucial piece of information here is
that X has isolated singularities, in particular X is nonsingular at the generic point
of t = x = y = 0. This means that zk ∈ f1 for some k, and necessarily k ≤ 3. We
will see that this implies that X has cDV singularities.

15.2.2.1 If f1 contains a linear term, or f2 a constant term, p ∈ X is cAn by 14.1.
From now on assume that this is not the case.

15.2.2.2 If, then, f1(0, y, z) contains a quadratic term, or f2(0, y, z) a linear term,
or f3(0, y, z) a constant term, p ∈ X is cDn by 14.2. From now on assume that this
is not the case.

15.2.2.3 We then have:

f = x2 + y3 + txg2(x, y, z) + th3(y, z) + t2h(x, y, z, t)

where:
a) g2(x, y, z) is a polynomial of degree ≤ 2 (not necessarily homogeneous), and

g2(0, y, z) is homogeneous of degree 3;
b) h3(y, z) is a homogeneous polynomial of degree 3 and z3 ∈ h3;
c) finally, h(x, y, z, t) is a power series vanishing at the origin, and h(0, y, z, t)

contains no linear terms.
Then:

f =
(
x+

tg2

2

)2

+ y3 + th3(y, z) + t2h′(x, y, z, t)

which, via x→ x+ tg2
2 , transforms to:

x2 + y3 + th3(y, z) + t2h′′(x, y, z, t)

Now, as in the proof of 13.3, tz3 ∈ h3 implies (if ch k 6= 2, 3) that p ∈ X is a cE6

singularity. �
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