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(1)

(a) Quotient maps are continuous, so preimages of closed sets are closed
(preimages of open sets are open, and f−1(Y \A) = X \ f−1(A) for all
A ⊂ Y ). Since Y is Hausdorff, {y} is closed (given any x ∈ Y \ {y},
the definition of Hausdorff provides an open neighborhood Ux of x
which is disjoint from some open neighborhood of y, so that Y \ {y} =⋃
x∈Y \{y} Ux is open).

(b) No. Here are two counterexamples:

1. As we have seen in lecture, the quotient space (R × {0, 1})/∼
with (x, 0) ∼ (x, 1) for x 6= 0 is not Hausdorff, but the equivalence
classes (i.e. the fibers of the quotient map) are {(x, 0), (x, 1)} for
x 6= 0, {(0, 0)}, and {(0, 1)}, all of which are closed in R× {0, 1}.

2. Let Y be any topological space which is not Hausdorff but in
which all singletons are closed, and take f = idY . (For example,
let Y be an infinite set together with the cofinite topology, i.e. the
topology whose open sets are precisely the complements of finite
subsets of Y .)

(2) We can say that X t Y = (X × {0}) ∪ (Y × {1}) as a set, and that
U t V is open in X t Y if and only if U is open in X and V is open in Y .
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Let us say that X ∪f Y = (X t Y )/≡, where ≡ is the equivalence relation
generated by (x, 0) ≡ (f(x), 1) for all x ∈ A (informally: x ≡ f(x)).

Given this, we now define a map of sets F : X/∼ → X ∪f Y that will
turn out to be bijective and bicontinuous. The only definition that comes to
mind is F ([x]) := [(x, 0)], square brackets denoting equivalence classes. As
usual, we first need to check whether this really is a definition, i.e. whether
[x1] = [x2] implies [(x1, 0)] = [(x2, 0)]. But [x1] = [x2] if and only if either
x1 = x2, or x1, x2 ∈ A and f(x1) = f(x2). In the latter case, (x1, 0) ∼
(f(x1), 1) = (f(x2), 1) ∼ (x2, 0), as desired.

Next, F is surjective because every element of X ∪f Y can be written
as either [(x, 0)] or [(y, 1)]; elements of the form [(x, 0)] are in the image of
F by definition, while given any y ∈ Y we can write y = f(x) for some x
since f is surjective, so that [(y, 1)] = [(f(x), 1)] = [(x, 0)] = F ([x]). To see
that F is injective, notice that [(x1, 0)] = [(x2, 0)] if and only if x1 = x2 or
f(x1) = f(x2).

To show bicontinuity, let us write p : X → X/∼ and q : X tY → X ∪f Y
for the quotient maps. Given a set U ⊂ X∪f Y , we need to prove that q−1(U)
is open if and only if (F ◦p)−1(U) is open. Let us abbreviate (F ◦p)−1(U) = V .
Then V = {x ∈ X : [(x, 0)] ∈ U}, and hence

q−1(U) = (V × {0}) ∪ (f(V ∩ A)× {1})

Thus, it suffices to show that V open in X implies f(V ∩A) open in Y . But
V ∩A is open in A by definition of the subspace topology, and is a union of
equivalence classes because V is.

(3) Let X = R × {0, 1} and let p : X → X/∼ denote the quotient map.
We will write down a bijection of sets f : X/∼ → S1, and then show that
this is a homeomorphism.

Fix a homeomorphism F : R → S1 \ {i} (we are thinking S1 ⊂ C )
such that limx→±∞ F (x) = i. Just to convince ourselves that such maps
actually exist, we can specify F to be the inverse of stereographic projection
centered at i ∈ S1. The explicit equations are F (x) = 2x

x2+1
+ x2−1

x2+1
i and

F−1(z) = Re(z)
1−Im(z)

for z 6= i.

Now we define f : X/∼ → S1 by setting f([(x, 0)]) := F (x) for all x ∈ R
and f([(0, 1)]) := i. This is a legitimate definition because every equivalence
class either contains exactly one element of the form (x, 0), or contains the
element (0, 1). Since F is bijective from R onto S1 \ {i}, it is clear that f is
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bijective from X/∼ onto S1. It now suffices to show that f and f−1 are both
continuous.

We will show that U ⊂ S1 is open if and only if f−1(U) is open. By
the definition of the quotient topology on X/∼, it suffices to prove that U is
open if and only if (f ◦ p)−1(U) is open. Now

(f ◦ p)−1(U) = [F−1(U)× {0}] ∪ [(I(F−1(U) \ {0}) ∪ Y )× {1}], (∗)

where I : R∗ → R∗ is defined by I(x) = 1
x
, and Y = {0} if i ∈ U whereas

Y = ∅ if i 6∈ U .
Case 1: i 6∈ U . In this case, U is open if and only if F−1(U) is open.

Since Y = ∅, this is in turn obviously equivalent to the right-hand side of (∗)
being open.

Case 2: i ∈ U . In this case, U is open if and only if F−1(U) is open and
U in addition contains an open neighborhood of i. This is in turn equivalent
to F−1(U) being open and containing a set of the form |x| > N for some
N � 1 (since limx→±∞ F (x) = i). But that is again equivalent to both of the
disjoint parts on the right-hand side of (∗) being open since now Y = {0}.

(4) One possibility:

Another one:
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The important point is that the points on the boundary of the square that
are being identified before the cut are still being identified the same way
after the cut. For instance, (0, 0.9) on the left vertical edge must always be
identified with (1, 0.1) on the right vertical edge before and after cutting.
Most of you identified (0, 0.9) with (1, 0.6), and (0, 0.4) with (1, 0.1), after
cutting.

(5) I don’t feel like writing this up. Indeed it is similar to (4). I will
do it in class if you ask me. Perhaps I can give a hint. Use the model
P2(R) = D2 ∪f S1 to give P2(R) the structure of a CW complez: a polygon
with certain identifications on the boundary. Then cut and paste, a bit like
in question (4).

(6) (a) By definition, the restriction of pn to Hn
C is surjective if and only

if every equivalence class (in other words, every S1-orbit) in S2n+1 contains
an element of Hn

C. But this is easy to see: Let z ∈ S2n+1. If zn+1 = 0, then
z ∈ Hn

C anyway. If zn+1 6= 0, then t := |zn+1|/zn+1 ∈ S1, and the (n + 1)-st
coordinate of tz is equal to |zn+1| ∈ [0,∞), so that tz ∈ Hn

C.

(b) If z ∼ w, then w = tz for some t ∈ S1, hence wn+1 = tzn+1. Since
z, w ∈ Hn

C, both wn+1 and zn+1 are nonnegative real numbers. If zn+1 = 0,
then wn+1 = 0, and there is nothing to show. But if zn+1 > 0, then t =
wn+1/zn+1 ∈ [0,∞), and so t = 1 because t ∈ S1; thus, z = w.

(c) Let us denote this map by f . Then f is clearly continuous as a map
from Hn

C to Cn = R2n. Moreover, the image of f is contained in the unit
ball because |z1|2 + ...+ |zn|2 = 1− |zn+1|2 ≤ 1. We now claim that the map
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g : B2n → Cn+1 given by g(z) = (z,
√

1− |z|2) is a continuous inverse to f .
Indeed, g is obviously continuous, takes values in Hn

C, and satisfies f ◦g = id,
g ◦ f = id.

(7) f is nullhomotopic if and only if there exists a continuous map h : S1×
[0, 1] → X with h(z, 0) = f(z) and h(z, 1) = x0 for all z ∈ S1 and some
fixed x0 ∈ X. Thus, given g, and viewing D2 as a subspace of C as usual,
we can simply define h(z, s) := g((1 − s)z). Conversely, given h, we can
define g(z) := h(z/|z|, 1− |z|) for z 6= 0 and then only need to observe that
limz→0 g(z) = x0, so that defining g(0) := x0 yields a continuous extension
of g from B2 \ {0} to B2.

Remark 1: It is possible to phrase this argument more geometrically by
showing that

(S1 × [0, 1])/(S1 × {1})→ B2

[(z, s)] 7→ (1− s)z

is well-defined and a homeomorphism; i.e. the cone over a circle is homeo-
morphic to a disk.

Remark 2: We may wish to require that h be a homotopy relative
endpoints, i.e. that h(1, s) = x0 for all s ∈ [0, 1] with x0 = f(1). In this case
h(z, s) := g((1− s)z + s) would work. In some sense we are using here that
B2 with the subspace [0, 1] collapsed is homeomorphic to B2.

(8)

Fs(t) =


f( 4t

1+s
) for t ∈ [0, 1+s

4
],

g(4t− (1 + s)) for t ∈ [1+s
4
, 2+s

4
],

h(4t−(2+s)
2−s ) for t ∈ [2+s

4
, 1].

(9) Set n = φ(1). Then φ(x) = nx for all x ∈ Z, and we can take f(z) = zn

since it holds by definition that f∗(Φ(x)) = [t 7→ f(Φ(x)(t))] = [t 7→ e2πixnt] =
Φ(φ(x)).

(10) Notice that z, w ∈ S1 so we can just set f(z, w) = z to get a coun-
terexample. We could also realize T 2 as a surface of revolution in R3 as usual
and note that the map given by projection onto the plane perpendicular to
the axis of symmetry is a counterexample.
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