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A small disclaimer

This document is a bit sketchy and it leaves some to be desired in
several other respects too. I thought it is more useful to you if I show
you this now than if I show you a much better document at a time
infinitely far into the future.

(1) The equivalence of (i) and (ii) is an immediate consequence of Problem 7
of sheet 1.

The key point is this: fix x0 ∈ X and let f : S1 → X be a loop based
at x0. Assuming that we have F : D2 → X a continuous map such that
F|S1 = f , we want to show that the path γ(t) = f(e2πit) is homotopic to the
constant path ex0 as loops, that is rel {0, 1}. All you have to do is to produce
an explicit continuous map Φ: I × I → D2 ⊂ C such that:

(i) Φ(t, 0) = e2πit, and

(ii) for all t, s ∈ I, Φ(t, 1) = Φ(0, s) = Φ(1, s) = 1

(DO write down explicitly such a map!) Then Γ = F ◦ Φ: I × I → X is the
desired path homotopy from γ to ex0 .
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(2) (a) Informally it suffices to substitute x = a and y = a−1b. Then
x2y2 = aba−1b, and we only need to observe that the substitution can be
reversed by setting a = x and b = xy.

More formally, let F = 〈u, v〉 be the free group on two generators. By
definition, Gi = F/Ni, with N1 (N2) the smallest normal subgroup of F
containing the element uvu−1v (u2v2) respectively. We then define a homo-
morphism φ : F → F by setting φ(u) = u and φ(v) = uv. (Homomorphisms
of free groups can be “prescribed on generators” just like linear maps of vec-
tor spaces can be prescribed on basis vectors. This is made rigorous by the
universal property of free groups.) This is in fact an isomorphism with in-
verse given by ψ(u) = u, ψ(v) = u−1v. It is now easy to see that φ(N1) = N2

and ψ(N2) = N1, so that G1, G2 are isomorphic via gN1 7→ φ(g)N2 and
gN2 7→ ψ(g)N1.

(b) π1(M) = Z = 〈α〉, where α is the homotopy class of the “soul” S of
the Möbius strip, i.e. the image of [0, 1]× {1

2
} under the usual quotient map

[0, 1]× [0, 1]→M , where (0, y) ∼ (1, 1− y). This is clear by observing that
the map r : M → S given by r([(x, y)]) = [(x, 1

2
)] is a strong deformation

retraction. (We don’t have to worry about orientations: If α is a generator
then so is α−1.)

Key observation: ∂M is connected, i.e. a circle, and [∂M ] = α2 in π1(M).
This is almost entirely analogous to the reasoning I used to convince you
that π1(P2(R)) = Z2 viewing P2(R) as B2/∼.

Van Kampen now tells us that π1(K) = 〈α, β |α2 = β2〉, which modulo
replacing α or β by its inverse is clearly the same as the second presentation
from (a).

(3) (a) There are many retractions r : S1 ∨ S1 → S1. E.g. we can keep
the first factor pointwise fixed and collapse the second factor onto the usual
basepoint. More formally, recall that

S1 ∨ S1 = [(S1 × {0}) ∪ (S1 × {1})]/{(x0, 0), (x0, 1)}

for some (any) given point x0 ∈ S1. Define a map

r̂ : (S1 × {0}) ∪ (S1 × {1})→ S1

by r̂(x, 0) := x and r̂(x, 1) := x0. This is obviously continuous, and constant
on equivalence classes, and hence factors through a continuous map r̃ : S1 ∨
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S1 → S1. Now define a map i : S1 → S1 ∨ S1 by i(x) := [(x, 0)]. Then i is a
homeomorphism onto its image, and r := i ◦ r̃ does the job.

If S1 was a deformation retract of S1∨S1, then their fundamental groups
would be isomorphic by a proposition from lectures, but we also know that
π1(S

1) = Z and π1(S
1 ∨ S1) = Z ∗ Z, which aren’t isomorphic as groups if

only because they aren’t both abelian.
Remark: Notice that the inclusion S1 → S1∨S1 induces an injection on

π1 for concrete reasons (〈a〉 → 〈a, b〉) as well as abstract reasons (existence
of a retraction).

(b) Say i : S1 ↪→ S1 ∨ S1 is the inclusion of the original circole into the
first circle. For all n ∈ Z, define a retraction rn : S1 ∨ S1 → S1 such that the
first circle is mapped back identically to the original circle, and the second
circle cover the original circle n times. I leave it to you to show rigorously
that if n 6= m then rn 6∼ rm.

(4) The statement really isn’t true for arbitrary decompositions X = U∪V
even with U ∩ V connected, and there are easy counterexamples where U is
open and V is closed: Take X = S1, let p : [0, 1]→ X be the usual quotient
map (0 ∼ 1), U = p((0, 1)), V = p([0, 1

2
]). Then U ∪ V = X; the intersection

U ∩ V = p((0, 1
2
]) is connected; and all three pieces are simply-connected.

Remark: The amalgamated product in this example is too small compared
to π1(X), so the part of the proof that fails is the “easy” step that I sketched
in class (surjectivity of Φ).

(5) Let Z ⊂ Rn be a discrete subset. The statement is more or less obvious
if Z is finite. If Z is infinite, it still works: for all z ∈ Z, choose a small
punctured ball B(z, εz)

? ⊂ X: then Rn is obtained from X by attaching all
the B(z, εz).

(6) This was meant to be a tough question and I only sketch the key ideas
here.

Here is a drawing of X ⊂ R3:
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By shrinking the disk D ⊂ X to a point, we see that X is homotopic to
S2 ∨ S1 ∨ S1 and hence π1(X) = Z ? Z as claimed.

This drawing shows how to construct Y :

It is clear from the drawing that Y is obtained from identifying the 3
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boundary circles on a disk with two holes or, equivalently, the sides of a
7-gon as drawn. There are two ways to to do this upto homeomorphism:

(i) taking a−1 in the drawing gives Y and

π1(Y ) = G1 = 〈a, b, c | abab−1ca−1c−1〉

(ii) taking a in the drawing gives a topological space Z with

π1(Z) = G2 = 〈a, b, c | abab−1cac−1〉

It is clear that Y and Z are not homeomorphic: indeed G1 and G2 are
not isomorphic; indeed Gab

1 = Z2 is not isomorphic to Gab
2 = Z2 ⊕ (Z/3Z).

(7) The first is not hard:

The second is tricky to describe and draw: I will do it in class if you ask
me.

(8) We know that the set of covers of S1∨S1 upto isomorphism is the set of
2-oriented 2-valent graphs upto isomorphism. I leave the 2-sheeted covers to
you (we did this in class). The 3-sheeted covers are the graphs with 3 vertices:
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(9) I only give the basic idea here. Choose a point P ∈ P2(R). If X is a
covering of P2(R) then:

Either X = P2(R) ∪ (∪nS2) ∪ P2(R) is the following space: first attach a
chain of n spheres (n=0 is allowed) by identifying the North pole of
the i-th sphere with the South pole of the i+1-st sphere, then attach a
copy of P2(R) by identifying P with the South pole of the first sphere,
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and finally attach a second copy of P2(R) by identifying P with the
North pole of the last sphere.

Or X = ∪nS2 is the space obtained by attaching n ≥ 2 spheres in a circle
by identifying the North pole of the i-th sphere with the South pole of
the i+1-st sphere and the North pole of the last sphere with the South
pole of the first sphere.

(10) Recall that the commutator subgroup of a group G is the normal
subgroup of [G,G] ≤ G generated by all commutators [a, b] = aba−1b−1 of
two elements a, b ∈ G; the quotient G/[G,G] = Gab is an abelian group, the
abelianization of G.

The covering in question is the covering p : (Xab, x0) → (X, x) corre-
sponding to the commutator subgroup H ≤ π1(X, x) under the fundamental
theorem of covering space theory.

Suppose that q : (Y, y) → (X, x) is an abelian cover. Under the cor-
respondence of the fundamental theorem, this cover corresponds to a nor-
mal subgroup H = q?π1(Y, y) ≤ G with abelian quotient group G/H. Be-
cause the quotient is abelian, necessarily [G,G] ≤ H. By the lifting theorem
(b) p : (Xab, x0) → (Y, y) lifts as a (base-point preserving) continuous map
p̃ : Xab → Y , which is itself a covering, and this shows that Xab is a covering
space of every other abelian cover of X.

The universal abelian cover of S1 ∨ S1 is homeomorphic to the standard
square mesh in R2.
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