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A small disclaimer

This document is a bit sketchy and it leaves some to be desired in
several other respects too. I thought it is more useful to you if I show
you this now than if I show you a much better document at a time
infinitely far into the future.

(1)

n∑
i=1

(−1)i dimHi =

=
n∑
i=1

(−1)i dim kerφi +
n∑
i=1

(−1)i−1 dim imφi−1 =

=
n∑
i=1

(−1)i(dim kerφi + dim imφi)

since dim imφ0 = dim imφn = 0. But dim kerφ + dim imφ = dimV for all
linear maps φ : V → W .

(2) (a) By exactness at A, 0 = im(0) = ker(φ) so φ is an isomorphism
onto its image as desired. Exactness at C gives C = ker(0) = im(ψ), and
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so C = imψ ∼= B/ ker(φ) = B/(imφ) by the first isomorphism theorem of
group theory and exactness at B.
(b) Injectivity: If φ(a) + ρ(c) = 0, then applying ψ yelds c = 0 by exactness
of the sequence and the defining property of ρ. Hence φ(a) = 0 and so
a = 0 by exactness. Surjectivity: For any b ∈ B put c = ψ(b) and write
b = (b − ρ(c)) + ρ(c). Notice that b − ρ(c) ∈ ker(ψ) since ψ(b − ρ(c)) =
c− (ψ ◦ ρ)(c) = 0, and hence b− ρ(c) = φ(a) for some a by exactness.

Woffle The maps in the exact sequence 0 → Zn → Zn2 → Zn → 0 are
given by φ(x mod n) = (nx mod n2) (well-defined since if x changes by
a multiple of n then nx changes by a multiple of n2; and clearly a group
homomorphism) and ψ(x mod n2) = (x mod n) (well-defined since n2 is
a multiple of n. The obvious guess ρ(x mod n) = x mod n2 is not well
defined since n is not a multiple of n2. We can force well-definedness by
insisting that x ∈ {0, 1, . . . , n− 1} but the resulting ρ would not be a group
homomorphism (consider ρ(x+ x) and ρ(x) + ρ(x) for x = n− 1).

In fact Z2 ⊕ Z2 is not isomorphic to Z4 (it has no elements of order 4)
and, more generally, and for the same reason, Zn ⊕ Zn is not isomorphic to
Zn2 (all elements have order dividing n, so no element has order n2).

A theorem of linear algebra states that linear subspaces of vector spaces
over a field always have complements, and if D ⊂ B complements ker(ψ) then
the natural map D → B/ ker(ψ) is an isomorphism. Thus D ∼= B/ ker(ψ) ∼=
imψ = C, and composing the inverse of the composition of these isomor-
phisms with the inclusion of D into B yelds the desired linear map ρ.

(3) This is a straight-up Mayer-Vietoris question. We have a long exact
sequence

· · · → H1(Rn)→ H0(U ∩ V )→ H0(U)⊕H0(V )→ H0(Rn)→ 0.

Now H1(Rn) = 0 since Rn is contractible (or even only since Rn is simply-
connected) so H0(U ∩ V ) injects into H0(U) ⊕ H0(V ) with image equal to
the kernel of the surjection φ : H0(U) ⊕ H0(V ) → H0(Rn). Now H0(U) ∼=
H0(V ) ∼= H0(Rn) ∼= Z since all three spaces are path-connected; conversely
H0(U ∩ V ) ∼= Z would imply that U ∩ V is path-connected by Hatcher
Proposition 2.6.

It seems intuitively obvious that a surjection Z⊕Z→ Z must have a “1-
dimensional” kernel. In fact, this would be obvious from the standard rank-
nullity theorem if we were using homology with coefficients in the abelian
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group G = (k,+), where k is a field—for example k = Q (so this is then
one way of answering the question, assuming that Mayer-Vietoris works with
G-coefficients).

Alternatively “rank-nullity for abelian groups” (Google!) shows that
H0(U ∩V ) has rank 1, and since H0(U ∩V ) is torsion-free by Hatcher Propo-
sition 2.6, H0(U ∩ V ) ∼= Z.

Arguably the least pretentious way out is to note that φ(a, b) = a − b if
we use augmentation to identify H0 of each of U, V,Rn with Z, and so then
obviously ker(φ) = {(a, a) : a ∈ Z} ∼= Z.

(4) It suffices to compute the induced maps on πab
1 , or equivalently on π1

since all fundamental groups in this question are abelian.
(a) We know that π1(S

1 × S1) ∼= Z2 via the isomorphism whose inverse
sends (m,n) ∈ Z2 to the homotopy class of the loop t 7→ (e2πimt, e2πint).
Thus (exactly as in Homework 3) it follows straight from the definitions that
f∗(m,n) = (am+ bn, cm+ dn), or in other words f∗ = ( a bc d ).

(b) Similarly, what we have proved about fundamental groups is enough
to deduce that the map Z→ π1(S

1 × B2), m 7→ [t 7→ (e2πimt, 1)], is a group
isomorphism (using that B2 is contractible). It is then once again immediate
from the definitions that i∗(m,n) = m.

(5) Notice that U ∩ V = L t R, where L = (X × (0, 1
2
))/∼ and R =

(X×(1
2
, 1))/∼. Hence the question comes down to understanding the relation

between the homology groups of U, V, L,R and X. I claim that there exist
four homotopy equivalences α : L → X, β : R → X, γ : U → X and
δ : V → X such that the following four diagrams commute:

L

α
��

i|L // U

γ
��

L
j|L //

α
��

V

δ
��

R
i|R //

β
��

U

γ
��

R
j|R //

β
��

V

δ
��

X id // X X id // X X id // X X
f // X

Let’s assume for now that this is true. Then we have the following commu-
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tative diagram:

Hi(U ∩ V )
i∗⊕j∗ // Hi(U)⊕Hi(V )

(4)

��

Hi(L)⊕Hi(R)

(3)

��

(1)

OO
(2)

55

Hi(X)⊕Hi(X)
φ // Hi(X)⊕Hi(X)

The arrows (1), (2), (3), (4) will be explained presently; (1), (3), (4) are
isomorphisms. Hence there is one and only one way of defining φ such that
the diagram commutes. Once (1), (2), (3), (4) have been defined, it will
therefore be possible to compute φ, and the result will be as claimed.

(1) is the canonical isomorphism identifying the homology of a disjoint
union with the direct sum of the homologies of its pieces (Hatcher Proposition
2.6). So (1) maps (l, r) to λ∗(l) + ρ∗(r), where λ : L → U ∩ V and ρ : R →
U ∩ V are the inclusions.

(2) is defined to be the composition of i∗ ⊕ j∗ with (1). In other words,
(2) maps a pair (l, r) to (i∗(λ∗(l) + ρ∗(r)), j∗(λ∗(l) + ρ∗(r))) = ((i|L)∗(l) +
(i|R)∗(r), (j|L)∗(l) + (j|R)∗(r)).

(3) maps (l, r) to (α∗(l), β∗(r)). This is an isomorphism since α, β are
homotopy equivalences.

(4) maps (u, v) to (γ∗(u), δ∗(v)). This is an isomorphism since γ, δ are
homotopy equivalences.

As indicated above, with these definitions in place we can compute φ(a, b).
In order to do so, we write (a, b) = (3)(l, r) = (α∗(l), β∗(r)). Then φ(a, b) =
(4)(2)(l, r) by commutativity of the diagram. Thus, φ(a, b) = (4)(2)(l, r) =
(γ∗(i|L)∗(l) + γ∗(i|R)∗(r), δ∗(j|L)∗(l) + δ∗(j|R)∗(r)). Finally, using the four
small diagrams, φ(a, b) = (α∗(l) + β∗(r), α∗(l) + f∗β∗(r)) = (a+ b, a+ f∗(b))
as desired.

It remains to discuss the four small diagrams, i.e. to define α, β, γ, δ,
check that they are indeed homotopy equivalences as claimed, and that the
diagrams actually commute.

Defining α, β, γ is easy since L,R, U are obviously homeomorphic to X
× interval. For example, L = (X × (0, 1

2
))/∼ and all equivalence classes are

single points, so we can just put α([(x, t)]) = x; likewise β([(x, t)]) = x and
γ([(x, t)]) = x. Clearly the first and the third diagram commute.

4



In order to define δ we produce a homeomorphism δ̂ : V → X × (0, 1)
and define δ = prX ◦ δ̂. In order to define δ̂ we recall that V = (X ×
([0, 1

2
) ∪ (1

2
, 1]))/∼ and employ a piecewise definition: For t ∈ [0, 1

2
) put

δ̂([(x, t)]) = (x, t+ 1
2
). For t ∈ (1

2
, 1] put δ̂([(x, t)]) = (f(x), t− 1

2
). This is well-

defined since the only nontrivial equivalence relations are (x, 1) ∼ (f(x), 0),
and indeed (x, 1) gets mapped to (f(x), 1

2
) by the second part of the definition

of δ̂, as does (f(x), 0) by the first part.
Given that δ̂ is a homeomorphism (which is the only step of the proof

I’m skipping—this follows easily from f being a homeomorphism), it is clear
that δ is a homotopy equivalence. Commutativity of the second and fourth
diagrams is clear from the definitions.

(6) X is homotopic to (∨nS1)∨S2 so by repeated applications of Seifert-van
Kampen π1(X) = Z? n. There are various ways to compute homology. An
efficient way is to use the exact sequence of the pair (X,A) where A = ∨nS1.
First check that H1A = Zn, H0A = Z and all other HiA = (0). Then
note that (X,A) is a good pair so Hi(X,A) = HiX/A = Hi S

2. The exact
sequence looks like

H2A
(
(= (0)

)
→ H2X → H2X/A(= Z)→ H1A(= Zn)→ H1X → H1X/A

(
= (0)

)
Note that by excisionH2(X,A) = H2(S

2, pt) and the natural mapH2(X,A)→
H1A factors through H1 pt→ H1A induced by the natural inclusion pt→ A
hence it is the zero map. It follows that:

HiX =


Z if i = 0

Zn if i = 1

Z if i = 2

(0) otherwise

(7) This is dead easy: upto homeomorphism it doesn’t matter where the
lines are: X = (R2 \ {P1, P2, P3})×R is homotopic to ∨3S1, hence π1(X) =
Z? 3 and H0X = Z, H1X = Z3, and all other Hi are (0).

(8) P2(C) minus a line is the affine plane C2 so X = C2 \ {0} = R4 \ {0} ∼
S3. So π1(X) = (0), H3X = H0X = Z and all other HiX = (0).
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(9) Right. Well (X,A) is a good pair so Hi(X,A) = Hi(X/A) and X/A
is the torus again: Hi(X,A) = Hi S

1 × S1 and everybody knows what these
groups are: H0 = H2 = Z, H1 = Z2 and all other Hi = 0.

(10) Oh, I don’t know. If A = Sn−1 ⊂ Sn then Sn/A = Sn ∨ Sn. So let
π : Sn → Sn ∨ Sn be the quotient map and h = id∨ ϕ : Sn ∨ Sn → Sn where
ϕ : Sn → Sn is your favourite map of degree −1 fixing the point where the
two sphere are joined. Now f = h ◦ π will do the trick.
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