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(1) The “linear system” (=set, if you like) of (projective) plane conics
passing through 4 points has dimension 1 unless the 4 points all lie on a line.

(2) Let C, D be plane cubics intersecting in 9 distinct points. Assume
that 3 of these points lie on a line L. Conclude that the remaining 6 points
of intersection lie on a conic [Hint: 1 curve in the linear system λC + µD
contains the line L].

(3) Do problem 2.12 on pages 41–42 of Reid’s UAG, following the hints
given there.

(4) In this problem I help you to revise the (19th century) proof of Hilbert
Nullstellensatz, using the resultant, as I discussed it in class. While not
as “neat” as the modern algebraic approach, this proof is much easier to
understand.

Let R be a UFD and g1, ..., gr ∈ R[X] polynomials with coefficients in R.
Let

R̃ = R[λ1, ..., λr;µ1, ..., µr]

be the UFD obtained adjoining the variables λi, µi to R. Consider f =
∑
λigi

and g =
∑
µigi; think of them as polynomials in R̃[X]. We can write the

resultant r(f, g) ∈ R̃[X] in the form

r(f, g) =
∑
I,J

αI,Jλ
IµJ

over multi-indices I, J , and αI,J ∈ R. We define the resultant system of the
gis to be the set {αI,J}.
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(a) There is a ϕ ∈ R[X] dividing all the gis, if and only if all αI,J = 0.
(b) Show that (αI,J) ⊂ (g1, ..., gr) ∩ R, that is, every αI,J belongs to the

ideal of R[X] generated by the gis.
(c) Show by example that the inclusion in (b) is strict.
(d) Let K be an infinite field and f ∈ K[X1, ..., Xn] be a polynomial of

degree d. Show that, after a linear change in the variables X1, ..., Xn, we may
assume that Xd

n ∈ f , that is, the monomial Xd
n appears in f with nonzero

coefficient. [Hint: this is in the proof of Noether normalization]
(e) Use the resultant system to prove the weak form of Hilbert Nullstellen-

satz, that is if g1, ..., gr ∈ K[X1, ..., Xn] have no common zeros, they generate
the unit ideal. [Hint: proceed by induction on the number n of variables,
use (d) to put your polynomials in a favorable shape—convince yourself that
this really is necessary]

(5) Let A be a UFD, K its field of fractions (more generally you could
assume that A is an integral domain which is integrally closed in its field of
fractions). Let K ⊂ L be an algebraic extension of fields. Then if b ∈ L is
integral over A, the norm NL

K(b) is an element of A. [Note: we proved this,
and used it repeatedly, in the proof of Krull’s theorem in dimension theory.]

(6) Do problem 4.11 on page 78 of Reid’s UAG, following the hints given
there.

(7) Prove that A2 \ {0, 0} is not (isomorphic to) an affine variety [this is
problem 4.12 on page 78 of Reid’s UAG].

(8) Let X, Y be topological spaces and f : X → Y a continuous map.
If F is a sheaf on X, define the sheaf f•F on Y .
Similarly, for a sheaf G on Y , define the sheaf f •G on X.
Prove the formula:

HomX(f •G,F) = HomY (G, f•F)

(9) Let (X,OX) be an algebraic prevariety. Recall that an open subpre-
variety of X is a (Zariski) open subset U ⊂ X with the sheaf of functions:

OU := OX |U

[recall that, for any sheaf F on X, and denoting j : U ↪→ X the inclusion,
we use the notation

F|U := j•F
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We justify the change of notation on the grounds that j•, for the inclusion
j : U ↪→ X of an open subset, is much easier than f • for an arbitrary
continuous map f .]

Given a finite collection Xα of algebraic prevarieties, and open subpreva-
rieties Xαβ ⊂ Xα and isomorphisms:

ψαβ : Xαβ → Xβα

satisfying
ψαγ = ψβγ ◦ ψαβ

(whenever both sides are defined), construct an algebraic prevariety gluing
the Xα. Check that the ensuing object is an algebraic prevariety as pedan-
tically as you can at the same time using up no more than 5 handwritten
pages.

(10) Let X be an algebraic variety, U and V open subvarieties. Assume
that U and V are affine (i.e., isomorphic to affine varieties). Prove that
U ∩ V is also affine [hint: if i : U ⊂ X, j : V ⊂ X are the inclusions and
(i, j) : U × V → X × X is their product, U ∩ V = (i, j)−1∆]. Show by
example that the statement is wrong if X is a prevariety.

(11) Prove that the product of 2 projective varieties is again a projective
variety [hint: it is enough to prove that Pn×Pm is a projective variety. Think
of mapping Pn × Pm ↪→ P

nm+n+m via (xi; yj)→ (xiyj). This is problem 5.11
on page 92 of Reid’s UAG; you can get some hints there as well]. Conclude
that a projective “variety” is a variety (that is, show that it is separated).

(12) Do problem 5.12 on pages 92–93 of Reid’s UAG, following the hints
given there.

(13) Do problem 5.12 on pages 92–93 of Reid’s UAG, following the hints
given there. When you are done with it, remember that projective varieties
are proper and appreciate.
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