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(1) The “linear system” (=set, if you like) of (projective) plane conics
passing through 4 points has dimension 1 unless the 4 points all lie on a line.

(2) Let C', D be plane cubics intersecting in 9 distinct points. Assume
that 3 of these points lie on a line L. Conclude that the remaining 6 points
of intersection lie on a conic [Hint: 1 curve in the linear system AC' + puD
contains the line L].

(3) Do problem 2.12 on pages 41-42 of Reid’s UAG, following the hints
given there.

(4) In this problem I help you to revise the (19th century) proof of Hilbert
Nullstellensatz, using the resultant, as I discussed it in class. While not
as “neat” as the modern algebraic approach, this proof is much easier to
understand.

Let R be a UFD and gy, ..., g» € R[X] polynomials with coefficients in R.
Let 3

R = R[A, s Ay 15 e fr]

be the UFD obtained adjoining the variables A;, u; to R. Consider f = > Nigi
and g = ) p1;gs; think of them as polynomials in R[X]. We can write the
resultant r(f, g) € R[X] in the form

r(f,9) = ZQI,J)\IMJ
1,J

over multi-indices I, J, and a; ; € R. We define the resultant system of the
gis to be the set {ay s}



(a) There is a ¢ € R[X] dividing all the g;s, if and only if all a; ; = 0.

(b) Show that (ay.s) C (¢1,-.-, ¢-) N R, that is, every a; ; belongs to the
ideal of R[X]| generated by the g;s.

(c) Show by example that the inclusion in (b) is strict.

(d) Let K be an infinite field and f € K[Xy,..., X,)] be a polynomial of
degree d. Show that, after a linear change in the variables X1, ..., X,,, we may
assume that X4 € f, that is, the monomial X? appears in f with nonzero
coefficient. [Hint: this is in the proof of Noether normalization]

(e) Use the resultant system to prove the weak form of Hilbert Nullstellen-
satz, that is if g1, ..., g, € K[Xj, ..., X,,] have no common zeros, they generate
the unit ideal. [Hint: proceed by induction on the number n of variables,
use (d) to put your polynomials in a favorable shape—convince yourself that
this really is necessary]

(5) Let A be a UFD, K its field of fractions (more generally you could
assume that A is an integral domain which is integrally closed in its field of
fractions). Let K C L be an algebraic extension of fields. Then if b € L is
integral over A, the norm NEZ(b) is an element of A. [Note: we proved this,
and used it repeatedly, in the proof of Krull’s theorem in dimension theory.]

(6) Do problem 4.11 on page 78 of Reid’s UAG, following the hints given
there.

(7) Prove that A%\ {0,0} is not (isomorphic to) an affine variety [this is
problem 4.12 on page 78 of Reid’s UAG].

(8) Let X, Y be topological spaces and f: X — Y a continuous map.
If F is a sheaf on X, define the sheaf f,F on Y.

Similarly, for a sheaf G on Y, define the sheaf f*G on X.

Prove the formula:

Homyx (f*G,F) = Homy (G, foF)

(9) Let (X, Ox) be an algebraic prevariety. Recall that an open subpre-
variety of X is a (Zariski) open subset U C X with the sheaf of functions:

OU = Ox|U

[recall that, for any sheaf F on X, and denoting j : U — X the inclusion,
we use the notation

FlU = j°F
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We justify the change of notation on the grounds that j°, for the inclusion
7+ U — X of an open subset, is much easier than f*® for an arbitrary
continuous map f.]

Given a finite collection X, of algebraic prevarieties, and open subpreva-
rieties X3 C X, and isomorphisms:

waﬂ . onﬁ - X,@a

satisfying
wow - @Zjﬂv o ¢aﬁ

(whenever both sides are defined), construct an algebraic prevariety gluing
the X,. Check that the ensuing object is an algebraic prevariety as pedan-
tically as you can at the same time using up no more than 5 handwritten

pages.

(10) Let X be an algebraic variety, U and V' open subvarieties. Assume
that U and V are affine (i.e., isomorphic to affine varieties). Prove that
U NV is also affine [hint: if i : U C X, j : V C X are the inclusions and
(i,7) : U xV — X x X is their product, UNV = (i,5)"'A]. Show by
example that the statement is wrong if X is a prevariety.

(11) Prove that the product of 2 projective varieties is again a projective
variety [hint: it is enough to prove that P™ x P™ is a projective variety. Think
of mapping P" x P™ < P"" "™ via (z;;y;) — (z;y;). This is problem 5.11
on page 92 of Reid’s UAG; you can get some hints there as well]. Conclude
that a projective “variety” is a variety (that is, show that it is separated).

(12) Do problem 5.12 on pages 92-93 of Reid’s UAG, following the hints
given there.

(13) Do problem 5.12 on pages 92-93 of Reid’s UAG, following the hints
given there. When you are done with it, remember that projective varieties
are proper and appreciate.



