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(1) A projective variety X ⊂ Pn is said to be a local complete intersection
if, for every point x ∈ X, there is an affine neighbourhood x ∈ U ⊂ Pn such
that the ideal of X ∩ U in k[U ] is generated by n− dimX equations. Prove
that nonnsingular implies local complete intersection. [Hint: use the exact
sequence

0→ I/I2 → Ω1
Pn|X → Ω1

X → 0]

(2) Let C ⊂ P3 be the twisted cubic curve, that is, the image of P1 under
the morphism

(x0, x1, x2, x3) = (t30, t
2
0t1, t0t

2
1, t

3
1)

The purpose of the next three questions is to outline three different proofs
that the homogeneous ideal of C is generated by the tree obvious quadratic
equations

(x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2)

(a) C lies on the quadric

Q = {x0x3 − x1x2 = 0}

This is P1×P1 with coordinates (u0, u1; v0, v1); in terms of these coordinates
the embedding can be given as

(x0, x1, x2, x3) = (u0v0, u0v1, u1v0, u1v1)
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Show that, in general, algebraic curves onQ are given by a single bi-homogeneous
equation F = 0, that is F = F (u0, u1, v0, v1) is homogeneous of degrees d1, d2

in each of the two sets of variables (u0, u1) and (v0, v1).
(b) The rational normal curve C ⊂ Q is given by

(u0, u1, v0, v1) = (t20, t
2
1, t0, t1)

and the bi-homogeneoous equation of C is

C = {F = u0v
2
1 − u1v

2
0 = 0}

By what we said in the previous paragraph, the ideal I(C,R) of C in R is
generated by F . Now the image of the restriction

S → R

is the subring R# = ⊕R(d,d). It is almost immediate that I(C,R) ∩ R# is
generated by u0F and u1F , the restrictions of x2

1 − x0x2 and x1x3 − x2
2.

(3) Same notation as the previous question. Order the monomials in S =
k[x0, ..., x3] lexicographically, that is, for example

xa0
0 x

a1
1 · · · > xb00 x

b1
1 · · ·

if a0 > b0, or a0 = b0 and a1 > b1, etc. If f ∈ S, denote lm f the leading
monomial of f .

(a) Given polynomials g and f1, ..., fk, there are polynomials hi and r
(not necessarily unique) such that

g = r +
∑

hifi

and if m ∈ r is a monomial of r, no leading monomial lm fi divides r (the
“division” algorithm for polynomials of several variables).

(b) From now on we work with f1 = x0x2 − x2
1, f2 = x0x3 − x1x2, f3 =

x1x3− x2
2; denote m1 = x0x2, m2 = x0x3, m3 = x1x3 the leading monomials.

A degree d monomial m ∈ Sd is not divisible by any of the mi if and only if
m is one of the following monomials

(1) m = xa0x
d−a
1 with a > 0, or

(2) m = xa1x
d−a
2 with a > 0, or
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(3) m = xa2x
d−a
3 .

Note that there are 3d+ 1 such monomials.
(c) Let g ∈ Sd be a polynomial of degree d. By the previous two para-

graphs, g is congruent modulo I = (f1, f2, f3) to a polynomial g0 which is
the sum of monomials of type (1–3) in paragraph (2). This implies almost
immediately that the ideal I is a prime ideal but let me go through in more
detail. Denote R = R(C,O(1)) the homogeneous coordinate ring of C. We
know that S/I surjects to R, and Rd = k[t0, t1]3d. We have just shown that
dimk(S/I)d ≤ 3d + 1 = dimRd, hence these dimensions must be equal and
S/I = R.

To make all this even clearer, notice that, upon plugging x0 = t30, x1 =
t20t1, etc., the monomials in paragraph (2) evaluate to t3d0 , t

3d−1
0 t1, ..., t

3d
1

(4) Notation again as in the previous two questions.
(a) Show that the complex

0→ 2OP3(−3)
A→ OP3(−2)→ IC → 0

is exact, where

A =

 x0 x1

x1 x2

x2 x3


Indeed this is a local statement. Consider for example the restriction to the
affine open subset A3 = {x0 = 1}, with affine coordinates x = x1/x0, y =
x2/x0, z = x3/x0, set C0 = C ∩ A3, and I0 the ideal of C0. Then

I0 = (x2 − x2
1, x3 − x1x2)

is a complete intersection. The complex in question splits the Koszul complex
of the complete intersection: indeed the matrix

A0 =

 1 x
x y
y z


is equivalent, under column and row operations over k[x, y, z], to 1 0

0 y − x2

0 z − xy


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Exactness of the complex then follows from exactness of the Koszul complex.
Prove carefully that the Koszul complex is exact in this situation.

(b) From (1) we have a resolution

0→ 2OP3(−3)
A→ 3OP3(−2)→ OP3 → OC → 0

Breaking into two short exact sequences, and usingH1(P3,O(n)) = H2(P3,O(n)) =
(0) for all n (basic result of Serre on the cohomology of projective space),
and long exact sequences of cohomology groups, show that the sequence stays
exact upon taking global sections (and summing over n):

0→ 2S(−3)
A→ 3S(−2)→ S → R(C,O(1))→ 0

Here, of course, R(C,O(1)) = ⊕H0(C,O(1)) denotes the homogeneous co-
ordinate ring of C.

(5) Let C ⊂ P4 be the rational normal curve in P4, that is, the image of P1

under the morphism

(x0, x1, ...) = (t40, t
3
0t1, ...)

Show that there are four quadratic equations (q1, ..., q4) such that the ideal I
of C is everywhere locally generated by q1, ..., q4 but I needs six generators.

(6) Find generators of the homogeneous ideal (and prove carefully that
they generate) of the Grassmannian G(2, 5) in its Plücker embedding in P9.

(7) To do this question, it maybe useful to know the Hurwitz formula for
algebraic curves.

Let C ∈ P2 be a plane curve of degree d and C∗ ⊂ P2∗ the dual curve
(by definition this is the locus of tangent lines to C. Prove that C∗ is an
algebraic curve and

C 3 p→ TpC ∈ C∗

a morphism.
(a) Let L ∈ P2 be a line, not tangent to C. Define ϕ : C → L mapping

p→ TpC ∩ L. Show that ϕ is ramified at p iff p ∈ L or p ∈ C is a flex.
(b) If L is tangent to C at p1, ..., pr and none of the pi is a flex, then

L ∈ C∗ is an ordinary r-fold point (i.e., by definition, a point of multiplicity
r with r distinct tangents, and in particular r distinct smooth branches).
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(c) Let p ∈ P2 be a point not lying on C nor on any inflectional or multiple
tangent to C, L a line not containing p, ϕ : C → L the projection from p.
Use Hurwitz’s formula to compute the degree of C∗ (you should get d(d−1)).

(d) A sufficiently general point p ∈ C lies on (d+ 1)(d− 2) tangents of C
(not counting the tangent at p.

(e) Calculate the degree of the morphism ϕ in (a) and use Hurwitz to
count the flexes of C.

(f) Assume that C∗ has only ordinary nodes and cusps as singularities
(this is true for sufficiently general C). Show that C has

1

2
d(d− 2)(d− 3)(d+ 3)

bitangents [this may be quite hard, but should be fun to try]. In particular
a plane quartic has 28 bitangents. Do these have anything to do with the 27
lines on a cubic surface? [hint: 28=27+1. A more constructive hint would
be to choose a point p ∈ S on the cubic surface and project down to P2. This
is a finite morphism of degree 2, branched along a 4-ic in P2. Try and see
where do the 27 lines go...]

(8) Let X be a proper and smooth algebraic surface. Define a suitable
intersection product :

PicX × PicX → Z

on the group of Line bundles on X, by generalising intersections of curves in
P

2. Then prove the Riemann-Roch theorem on X:

χL =
1

2
L · (L ⊗ ω∗X) + 1 + pa

where ωX := ∧2Ω1 is the canonical line bundle and pa := h2O − h1O [hint:
first you should either study or make your own proof of Riemann-Roch for
curves].
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