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1 Motivation and definition of MHS

1.1 Motivation

You learned that if X is a nonsingular and projective (proper is enough)
algebraic variety over C, then the singular cohomology groups Hm(X;Z)
carry a (functorial) Hodge structure of pure weight m.
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In this lecture I explain that if X is a possibly singular and/or nonproper
algebraic variety over C, then Hm(X;Z) carries a functorial mixed Hodge
structure.

I also secretly attempt to give an introduction to the motivic point of
view. There is something special about the topological spaces underlying
algebraic varieties that results into various improvements of the functors of
algebraic topology (homology, cohomology). The mixed Hodge structure is
an example of an improvement. In turn, these improvements motivate the
special properties of topological spaces underlying algebraic varieties.

To motivate the definition, consider a nonsingular and proper algebraic
variety X and a Zariski closed subset Y ⊂ X. We are interested in the
nonproper Zariski open complement U = X \Y . We have an exact sequence
(see also the discussion in section 4 below):

· · ·Hm−1(X;Z)→ Hm−1(Y ;Z)→ Hm
c (U ;Z)→ Hm(X,Z)→ Hm(Y,Z) · · ·

For instance now if, to fix ideas, Y ⊂ X were a nonsingular divisor, then,
whatever Hodge-type structure Hm

c (U ;Z) may have, it has mixed weight
m− 1 and m.1

1.2 Mixed Hodge structures

Definition 1. A mixed Hodge structure is a triple (H,W•, F
•) where

1. H is a finitely generated Z-module;

2.
W• = · · ·Wl ⊂ Wl+1 · · ·

is an increasing filtration of H by Z-submodules2;

3.
F • = · · ·F p ⊃ F p+1 · · ·

1In terms of Algebraic Topology 101, this is the exact sequence for the homology of the
pair (X,U): you need to persuade yourself that Hm(X,U ;Z) = Hm−2(Y ;Z) (use excision
& Thom).

In the sequence Hm
c (U ;Z) is the compactly supported cohomology of U . Since we are

assuming that U is nonsingular, you may as well let d = dimX be the algebraic dimension
of X and think of this group as H2d−m(U ;Z).

2I am not absolutely sure about this, sorry. Usually W• is a filtration of HQ by rational
vector spaces. I don’t see any good reason to make this compromise.
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is a decreasing filtration of HC = H ⊗ C by C-vector spaces;

such that F • induces a Hodge structure of pure weight l on grWl H. The two
filtrations W• and F • are called the weight and the Hodge filtrations.

Definition 2. Let A, B be MHS; a morphism of MHS is a Z-module homo-
morphism f : A→ B that respects filtrations: for all l ∈ Z, f(Wl) ⊂ Wl and
for all p ∈ Z, fC(F p) ⊂ F p.

The category of MHS is an abelian category with tensor products and
internal Hom. The only nontrivial point is to show that image is the same
of co-image. Another way to say this is that morphisms of MHS are strict
wrt the weight filtration.

Exercise 3. Let f : A → B be a morphism of MHS. Then f is strict with
respect to both filtrations: for all l, if b ∈ Wl(B) is in the image of f , then
b comes from Wl(A) and, for all p ∈ Z, if b ∈ F p(B) is in the image of fC,
then b comes from F p(A).

This is not a terribly easy exercise but I absolutely need you to do it so
I give you several hints. It is crucial to understand that you must use both
filtrations.

The first thing to understand is why a morphism of pure HS is strict wrt
the F -filtration. So let f : A → B be a morphism of HS of weight m. Here
it is best to use the Hodge decomposition:

AC =
⊕
p

Ap,m−p, where F p(A) =
⊕
p′≥p

Ap
′,m−p′

so that

Ap,q = F p(A) ∩ Fm−q(A) and ∀p AC = F p(A)⊕ Fm−p−1(A)

Suppose now that b ∈ F p0(B) and let a ∈ AC such that f(a) = b. Writing
a =

∑
p ap,q it is clear that for all p > p0 f(ap,q) = 0.

For morphisms of MHS, the key point is to construct something like a
Hodge decomposition. So let H be a MHS, and write

Ip,q =

= (F p∩Wp+q(C))∩
(
Fq∩Wp+q(C)+F q−1∩Wp+q−2(C)+F q−2∩Wp+q−3(C)+· · ·

)
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(note the subscripts: p+ q, p+ q − 2, p+ q − 3, . . . ). Prove that

Wm(C) = ⊕p+q≤mIp,q and F p =
⊕
p′≥p

⊕
q

Ip
′,q

Finally use this Ip,q-decomposition to finish the exercise.

For simplicity in this note I don’t define what is a polarized MHS. Polar-
izations are very important, but excessive detail can distract from some of
the more basic issues.

1.3 Tate twist

Definition 4. The Tate Hodge structure is the Hodge structure Z(1) on Z
of pure weight −2 “with underlying Z-module 2πiZ ⊂ C.”

If V is a MHS, V (n) denotes V ⊗ Z(n): twisting by n has the effect of
raising all the weights by −2n (or, if you prefer, lowering all the weights by
2n).

Note that the definition of Tate Hodge structure does not make sense: of
course, all HS of weight 2n on Z are isomorphic, so what is this business of
2πi? The wording means that Z(1)⊗C has a natural C-basis α = 1

2πi
. This

is indeed true and I explain the point in § 5 below. For now, just think of
Z(1) as the unique HS on Z of pure weight −2.

2 There are four theories: get used to it

For topological spaces X satisfying some mild assumptions, there are four
theories: Hm(X;Z), Hm

c (X;Z), Hm(X;Z), and HBM
m (X;Z) (Borel–Moore

homology), each with their own functorialities. Here Hm and Hm
c are com-

pactly supported theories, whereas Hm and HBM
m have infinite support.

These theories arise from the category of constructible sheaves with six
operations, as derived functors:

Hm(X;Z) = RmΓ(X,ZX), Hm
c (X;ZX) = RmΓc(X,ZX),

HBM
m (X;Z) = R−mΓ(X,DX), Hm(X;Z) = R−mΓc(X,DX)

where Γ(X, ) is global sections, Γc(X, ) is global sections with compact
support, and DX is the dualising sheaf of X.

4



From now on in this lecture, X is an algebraic variety. If X is singular and
not proper, the four theories are (in general) different. You better get used to
this fact. There are some obvious maps between them. The most important
is the Poincaré map: if X is an algebraic variety of pure (algebraic) dimension
d, then X it is a pseudomanifold: consequently there is a homomorphism:

P : ZX [2d](d)→ DX

called the Poincaré homomorphism giving rise to a fundamental class [X] in
H0(X,DX [−2d])(−d) = HBM

2d (X;Z)(−d) and Poincaré maps

P : Hm(X;Z)→ HBM
2d−m(X;Z)(−d), and P : Hm

c (X;Z)→ H2d−m(X;Z)(−d)
(1)

If X is nonsingular, the Poincaré homomorphism is an isomorphism and these
last two homomorphisms are isomorphisms.

All these theories carry functorial mixed Hodge structures, all reasonable
morphisms are morphisms of mixed Hodge structures, and all reasonable
exact sequences are sequences of mixed Hodge structures.3

3 Grothendieck’s algebraic de Rham theorem

Theorem 5. If X is a nonsingular over C, then

Hm(X;C) = Hm(X,Ω•X/C)

3In this discussion, ZX [2d] denotes the complex ZX shifted 2d places to the left.
I will not explain the Tate twist at the level of sheaves. All you really need to know is that

on all X there is a “mixed sheaf” ZX(1); if F is a “mixed sheaf” then F (n) = F⊗ZX(1)⊗n

is a mixed sheaf with the property that Hm(X,F (n)) = Hm(X,F )(n). You don’t need to
know what these things are to use the formalism.

A thing to remember is that a shift of 2n places to the left is almost always accompanied
by a Tate twist by (n); here we have ZX [2d](d). If you have an exact sequence with a
term where this is not the case, then you probably made a mistake. Go back and chase
this right now!

If X is nonsingular and proper, the theory works so that Hm(X;Z) has pure weight
−m (this is natural and logical). So Hm(X;Z) has weight m and, if d is the algebraic
dimension of X, H2d−m(X;Z) has weight m− 2d: so, for P to be a morphism of HS, we
need to raise the weights of H2d−m(X;Z) by 2d, i.e. Tate twist by (−d). I am saying that,
in complete generality, P is a morphism of MHS.

I strongly advise you to take the habit of inserting your Tate twists from the beginning
of learning this theory. This additional investment is totally worth it. If you don’t do this,
you will write exact sequences where you never know what weights your HS actually have,
thus suffering a total degradation of information.
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In general, if X is nonsingular over a field k (for example k = Q), then X
has a de Rham complex Ω•X/k (this is a complex of coherent sheaves although

the differential is of course not OX-linear). The (hyper) cohomology of this
complex is the de Rham cohomology of X, Hm

dR(X). Note that this thing is
a vector space over k. In characteristic p, differentiating can get very tricky
so you always want to assume that k has characteristic 0! The de Rham
complex has a natural decreasing “stupid” filtration

F p =
⊕
p′≥p

Ωp′

X ,

thus

(1) Hm
dR(X) comes endowed with a decreasing filtration F p ⊃ F p+1 ⊃ · · · ,

and

(2) There is a spectral sequence E• computing this filtration with first page:

Ep.q
1 = Hq(Ωp

X/k)⇒ Hp+q
dR (X)

When X is complex projective (or compact Kähler) you can interpret
Hodge theory as saying that for all r ≥ 1 E1 = Er—that is, the spectral
sequence degenerates on the first page. The reason for this degenera-
tion is deep and it is the most crucial way in which topological spaces
underlying algebraic varieties are special.

The beauty of the theorem is that the group on the LHS is the singular
cohomology of X, which is all about the (classical) topology of X, whereas
you can compute the group on the RHS purely from the Zariski topology of
X.

The theorem makes a deep statement that asks a tantalising question: if
X is defined over a subfield k ⊂ C, then the singular cohomology Hm(X,C)
has a natural k-structure:

Hm(X;C) = Hm
dR(X)⊗k C

The question is: what exactly is this k-structure?
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4 Constructible sheaves and six operations.

Exact sequences

In Algebraic Topology 101 you learn how to compute the homology of a
space by standard exact sequences: sequence of the pair, Mayer–Vietoris
sequence. When working with algebraic varieties, these tools are not very
useful. It is much better to get used to working with the Zariski topology, and
with operations that are natural in algebraic geometry such as Zariski closed
subspaces and fibred products. This section is about algebraic-geometric
analogs of the sequence of the pair; in § 7 below I discuss the algebraic-
geometric analog of the Mayer–Vietoris sequence.

Suppose that X is a variety (or scheme) over k ⊂ C, let i : Y ↪→ X be the
closed embedding of a subvariety (or subscheme), and denote by j : U ↪→ X
the (open) inclusion of the complement U = X \ Y . This situation gives rise
to several exact sequences that I now discuss.

These exact sequences arise from two exact triangles that exist for all
Zariski cohomologically constructible (complexes of) sheaves F on X that
are locally constant for the classical topology:

i?i
!F → F → Rj?j

?F
+1−→ (2)

and
Rj!j

?F → F → i?i
?F

+1−→ (3)

4.1 An exact sequence

Plugging F = ZX in the triangle 2 we get an exact triangle:

i?i
!ZX → ZX → Rj?ZU

+1−→

This is not much use unless we know what i!ZX is and for this we usually
need some additional assumptions.

If there is one thing that you need to know about Verdier duality is that
i!DX = DY .

If X is nonsingular of (algebraic) dimension d = dimX, then DX =
ZX [2d](d) so, in this case, i!ZX = DY [−2d](−d) and the triangle gives rise
to an exact sequence of MHS:

· · ·HBM
2d−m(Y ;Z)(−d)→ Hm(X;Z)→ Hm(U ;Z)→ HBM

2d−m−1(Y ;Z)(−d) · · ·
(4)
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Note that this sequence is a little weird as it mixes (Borel–Moore) homol-
ogy with cohomology. Note that HBM

2d−m(Y ;Z) will tend to have weight m−2d
so we need to twist up by (−d) for it to have a morphism to Hm(X;Z).

A further specialization useful in applications is when Y ⊂ X is a simple
normal crossing divisor. In this case, we can pin down easily DY but, for
lack of time, I am not discussing this—but see exercise 7.

An even further specialization is when Y ⊂ X is a nonsingular divisor:
in this case i!ZX = ZY [−2](−1) and we get an exact sequence of MHS:

· · ·Hm−2(Y ;Z)(−1)→ Hm(X;Z)→ Hm(U ;Z)→ Hm−1(Y ;Z)(−1) · · · (5)

which is very nice and reasonable since it is all about standard cohomology
groups. (Note again that the weights of Hm−2(Y ;Z) have been raised by 2
so it can have a morphism to Hm(X;Z).)

4.2 Another exact sequence

Plugging F = ZX in the triangle 3 we get an exact triangle:

Rj!ZU → ZX → i?ZY
+1−→

giving rise to a long exact sequence of MHS:

· · ·Hm
c (U ;Z)→ Hm(X;Z)→ Hm(Y ;Z)→ Hm+1

c (U ;Z) · · · (6)

4.3 More exact sequences

Exercise 6. Plug F = DX (instead of F = ZX) in the triangles 2 and 3
and obtain two more exact sequences. Stare at them until they make sense
to you. Interpret all four exact sequences as exact sequences of pairs from
Algebraic Topology 101.

Exercise 7. Let Y = ∪jYj be a simple normal crossing variety. Write

Y [p] =
∐

j0<j1···<jp

Yj0 ∩ Yj1 · · · ∩ Yjp

so that Y [•] is a (strict) simplicial resolution of Y . This situation gives rise
to two “resolutions:”

QY → QY [0] → QY [1] · · ·
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and
DY ← DY [0] ← DY [1] · · ·

Suppose now that U is a smooth but not proper algebraic variety. Then there
exists a smooth and proper compactification U ⊂ X such that the comple-
ment Y = X \ U is a proper simple normal crossing variety. Using exact
sequences 4 and 5 now convince yourselves that Hm(U ;Z) has weights ≥ m
and Hm

c (U ;Z) has weights ≤ m. Also, for example, the natural morphism
Hm(X;Z) → grWm Hm(U ;Z) is surjective and grWm Hm

c (U ;Z) → Hm(Z;Z)
injective.

5 Cauchy’s theorem and the Tate Hodge struc-

ture

Theorem 8. H1(Gm,Z) = Z(−1) as Hodge structures.

Proof. Write i : {0} ↪→ A1 and j : Gm ↪→ A1, where Gm is the multiplicative
group: for all rings R, Gm(R) = R×.

Recall that if i : Y ↪→ X is a smooth divisor in a smooth space and j : U ↪→
X is the inclusion of the open complement, we have an exact sequence:

· · ·Hm−2(Y ;Z)(−1)→ Hm(X;Z)→ Hm(U ;Z)→ Hm−1(Y ;Z)(−1) · · ·

If we apply this to j : C× ↪→ C we obtain at once an isomorphism:

Res : H1(C×;Z)
∼=−→ H0({0};Z)(−1) = Z(−1)

of HS of pure weight 2.

Let’s understand this better and, in the process, also understand the
funny business with 2πi. Over a field k ⊂ C, there is a corresponding exact
sequence for algebraic de Rham cohomology over k, and it is induced by an
exact sequence of de Rham complexes over k:

0→ Ω•X/k → Ω•X/k(log Y )
Res−→ Ω−1+•Y/k → 0

Simon tells me that he defined all these complexes and the residue homomor-
phism. Something to keep in mind if you want to understand this stuff is the
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residue theorem (which is a harmless generalization of Cauchy’s theorem):
(closed) differential forms can be integrated on homology classes and∫

γ

Resω =
1

2πi

∫
τ(γ)

ω

where γ ∈ Hm(Y ;Z) and τ : Hm(Y ;Z)→ Hm+1(X;Z) is the Griffiths “tube
map” and ω is a closed algebraic differential form of degree m + 1 with a
logarithmic pole along Y .

We want to understand all this for j : Gm ↪→ A1 over any field k of
characteristic 0. Both these varieties are affine so no higher derived functors:
computing hypercohomology is a breeze:

k[z]dz // k[z] d
dz

Res // k

k[z] //

d

OO

k[z]

d

OO

Nothing much is going on here: if f(z) ∈ k[z] is a polynomial, then df(z) =
df
dz
dz is a polynomial 1-form. You don’t need any calculus to know what df

dz
is!

We deduce that H1
dR(Gm/k) = k with canonical basis dz

z
. If we are working

over a field k, the choice of basis is a no-brainer: we must choose dz
z

.
Because Gm is defined over Q (in fact over SpecZ, but never mind that),

the de Rham cohomology group H1
dR(Gm/Q) is Q, the 1-dimensional vector

space over Q with basis dz
z

. Thus H1
dR(Gm/C) = H1

dR(Gm/Q) ⊗Q C (flat
base change theorem for coherent cohomology) has a natural Q-structure
with basis dz

z
. On the other hand, by Grothendieck, H1

dR(Gm/C) is the sin-
gular cohomology group H1(C×;C) and from topology it inherits the lattice
H1(C×,Z), and hence also a rational structure. These two rational struc-
tures are not the same! Indeed, Poincaré duality gives a perfect pairing (the
cap product):

∩ : H1(C×;Z)×H1(C×;Z)→ H0(C×;Z) = Z

The natural integral basis of H1(C×;Z) is the cohomology class α such that
α∩γ = 1 where γ ∈ H1(C×;Z) is the class of the couterclockwise loop around
the origin. We all knew as undergraduates that:

dz

z
∩ γ =

∫
γ

dz

z
= 2πi
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hence α = 1
2πi

dz
z

: if we identify H1(C×;C) with C via the basis dz
z

, and we
argued that this is the natural and logical thing to do, then it makes sense to
say that “the underlying lattice”–the one given by topology as H1(C×;Z), is
1

2πi
Z; that is, again H1(C×;Z) = Z(−1) as a HS.

6 Extensions of MHS

There is absolutely no point in knowing about MHS if you don’t know how
to mix pure HS of different weights to form a MHS cocktail. Here I only
sketch the simplest possible case.

6.1 Intermediate Jacobians

Definition 9. Let H be a MHS, and p > 1/2(highest weight of H); then the
pth intermediate of H is the group Jp(H) = HC/F

p +HZ.

It is important to practice a few relevant cases to get a grip on what this
thing is.

Suppose that H is a pure HS of weight 1, so HC = H0,1 ⊕ H1,0 with
F 0 = HC ⊃ F 1 = H1,0; then J1H = H0,1/HZ. The dual H∨ of H is a HS
of weight −1, and H∨C = H−1,0 ⊕H0,−1 with F−1 = H∨C ⊃ F 0 = H0,−1, and
H−1,0 = H1,0∨, H0,−1 = H0,1∨, so J0H∨ = H1,0∨/H∨Z .

If X is a nonsingular and proper algebraic curve over C, then H1(X;Z)
is a HS of weight 1 and:

J1H1(X;Z) = H0,1/HZ = H1(X,OX)/H1(X;Z) = Picτ (X)

is the Picard variety of X. On the other hand, H1(X;Z) is a HS of weight
−1 and

J0H1(X;Z) = H−1,0/HZ = H1,0∨/HZ = H0(X,Ω1
X)∨/H1(X;Z) = Alb(X)

is the Albanese variety of X.4

4All nonsingular proper algebraic varieties X over any field k have a Picard variety and
an Albanese variety. In higher dimensions these abelian varieties are dual to each other.

If X is one-dimensional, the Abel theorem states that the Abel–Jacobi map
a : Picτ (X) → Alb(X) is an isomorphism. The Abel theorem is a beautiful and deep
result that is unfortunately rarely proved in Algebraic Geometry 101.
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Here is another case to contemplate: if H is a HS of weight 3, HC =
H0,3 ⊕H1,2 ⊕H2,1 ⊕H3,0 then J2H = (H0,3 ⊕H1,2)/HZ.

I forgot the most basic case: the Tate Hodge structure Z(1) has weight
−2 and J0Z(1) = C/2πiZ = C×.

6.2 Extensions

Theorem 10. Let A and B be MHS. Denote by Ext(B,A) the group of MHS
extensions:

0→ A→ H → B → 0

Suppose that A, B are separated, that is, the highest weight of A is < then
the lowest weight of B. Then Ext(B,A) = J0 Hom(B,A).

6.3 Wait, what?

Let X be a nonsingular proper algebraic curve over C, S ⊂ X a finite set, and
U = X \ S ↪→ X the open complement. We have an extension of separated
MHS:

(0)→ H0(S;Z)/H0(X;Z)→ H1
c (U ;Z)→ H1(X;Z)→ (0)

We are told that the class of this extension lies in the group:

J0 Hom(H1(X;Z), H0(S;Z)/H0(X;Z)) =

= Alb(X)⊗
(
H0(S;Z)/H0(X;Z)

)
=

= Hom
(
VS,Alb(X)

)
where VS =

(
H0(S;Z)/H0(X;Z)

)∨
, that is VS is the group of divisors D =∑

P∈S nPP supported on S and of degree degD =
∑
nP = 0. The class of

the extension is the Albanese homomorphism (aka Abel–Jacobi map) a : VS →
Alb(X); for example for P,Q ∈ S:

a(P −Q) =

∫ P

Q

∈ H0(X,Ω1
X)∨/H1(X;Z) :

a holomorphic 1-form ω on X is closed and, by Stokes, the value of the
integral

∫ P
Q
ω is well-defined modulo a closed path in H1(X;Z).
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6.4 Proof of theorem 10

Let’s just do the simplest case; the general case is not much harder. Let us
consider extensions:

(0)→ Z→ H → B → (0)

where B is a (pure) HS of weight 1. Assume for simplicity that B is torsion-
free so we can split the extension and the weight filtration of H over the
integers, and in fact let us assume that we have already done that so H =
Z ⊕ B and W0(H) = Z, W1(H) = H. It remains to endow H with an
F -filtration. Let us write BC = B0,1 ⊕B1,0 and Z⊗ C = A0,0.

We are looking to endow H with an F -filtration

F = F 0 ⊃ F 1 ⊃ F 2

in such a way that

F 0∩H0,0 = H0,0, F 1∩H0,0 = (0); and F 0/H0,0 = BC, F
1 = B1,0 F 2 = (0)

It follows that F 0 = H and F 2 = (0): we only need to decide F 1 and it
follows from the conditions that F 1 is the graph of a linear homomorphism
f : B1,0 → H0,0 = C:

F 1 = {(a, b) | a = f(b)}
We still need to mod out by integral automorphisms of Z ⊕ B that are the
identity on both Z and B: and these are in 1-to-1 correspondence with
integral linear homomorphisms B → Z. In summary:

Ext(B,Z) = B1,0∨/B∨Z = J0(B∨)

7 Proper base change. Cohomology of singu-

lar varieties

Theorem 11 (Proper base change theorem). Let X be a scheme over C,
f : Y → X a proper morphism, g : S → Y any morphism and E = S ×X Y ,
so that we have a fibre square:

E
g′ //

f ′

��

Y

f
��

S g
// X
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Then for all F ∈ Db
cc(X) the natural base change homomorphism:

g?Rf?F → Rf ′?(g
′ ?F )

is an isomorphism.

Let X be a singular proper algebraic variety over C, f : Y → X a res-
olution of singularities, g : S ↪→ X the inclusion of the singular set, E the
exceptional set, and j : U = X \ S ↪→ X the inclusion of the complement.
It is part of the definition of resolution of singularities that f : f−1U → U is
an isomorphism, thus we identify f−1U with U via f . Applying the proper
base change theorem to F = QY , we get a morphism of exact triangles:

Rj!ZU // Rf?ZY // i?Rf?ZE
+1 //

Rj!ZU // ZX //

OO

i?ZS

OO

+1 //

that induces an exact triangle

ZX → Rf?Zy ⊕ i?ZS → Rf?ZE
+1→

that, in turn, gives a Mayer–Vietoris type long exact sequence of MHS:5

· · ·Hm−1(E;Z)→ Hm(X;Z)→ Hm(Y ;Z)⊕Hm(S;Z)→ Hm(E;Z) · · · (7)

A breeze! It slices the cohomology of X by putting a rational weight filtration
on it the graded pieces of which are either pure HS or MHS of simpler (lower-
dimensional) schemes.

This incredibly simple structure is the only non-formal content of Deligne’s
theory of cohomological descent.

Exercise 12. Let X be an algebraic curve over C with n punctures and
k nodes. Compute the four mixed Hodge structures H1

c (X;Z), H1(X;Z),
H1(X;Z), HBM

1 (X;Z). Make sure that you have a geometric interpretation
of all extension classes. Stare at the result and practice is in your head until
it seems completely trivial.

5Suppose for simplicity that X has a unique singular point x ∈ X, so S = {x}. In
this case, X is obtained as a topological space by collapsing E ⊂ Y to a point. Then
we recognise this sequence as the long exact cohomology sequence of the pair (Y,E) from
Algebraic Topology 101.

If you produce a book or article with this exact sequence in it, I will open a good bottle
and drink it with you.
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8 What next? Invariant cycles, mixed Hodge

modules

I want to state and prove a really amazing fact: the global invariant cycle
theorem. Before I state it, I need some preparations. Let X be a nonsingular
projective variety over C, Y a nonsingular projective curve, and f : X → Y
a morphism. Denote by S ⊂ Y the set of singular values of f , Y = Y \ S
the set of regular values, X = f−1(Y ) and f : X → Y the induced smooth
projective morphism. Fix any y ∈ Y and let Xy = f−1(y) be the fibre at
y. For all m, the fundamental group π = π1(Y, y) acts on Hm(Xy;Z): this
action is called the monodromy action.

Theorem 13 (Deligne’s global invariant cycle theorem). For all m, the group
Hm(Xy;Q)π of monodromy invariant cohomology classes (cycles) on Xy is
the image of the natural homomorphism Hm(X;Q)→ Hm(Xy;Q).

Proof. Deligne [Del68] shows that the Leray spectral sequence with first page

Ep,q
1 = Hp(Rqf?QX)⇒ Hp+q(X;Q)

degenerates on the first page: for all r ≥ 1, Ep,q
1 = Ep,q

r . (In fact he
proves more, namely that there is a (noncanonical) isomorphism in Db

cc(Y ):
Rf?QX = ⊕Rmf?QX [−m].). Thus we have a surjection of MHS:

Hm(X;Q)→ H0(Y,Rmf?QY ) = H0(Xy;Q)π ⊂ Hm(Xy,Q)

But then Hm(X;Q) → Hm(Xy;Q)π is also surjective, by stricness and the
fact—shown in exercise 7—that Hm(X;Q) → grWm Hm(X;Q) is surjective.

Looking at what we have done, it is natural to wish for a theory “mixed
sheaves” on schemes with six operations, “improving” the category of coho-
mologically constructible sheaves, such that, for example: if F is a mixed
sheaf on X and x ∈ X is a point, then the fibre Fx is a mixed Hodge com-
plex; the cohomology groups Hm(X;F ) carry MHS; etcetera. In fact we had
this theory for at least 30 years, and it is Morihiko Saito’s category of mixed
Hodge modules. If you think about it, I have been using it all the time in
this lecture (without understanding what it is).
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A short guide to the literature

I limit myself to a few suggestions to help you get started.
This theory is really tough to learn properly. For starters, the motivation

for developing mixed Hodge theory comes from the Weil conjectures and
étale cohomology. If you are a number theorist, you are probably better off
leaving MHS alone and study étale cohomology first. You can come back to
MHS later and they will make sense.

If you are a geometer, and you want to use Hodge theory to learn the
motivic point of view, you should start from the nice-and-easy [Gro69] and
Milne’s note Motives—Grothendieck’s dream (avaliable for download from his
website). Then I recommend the paper of Deligne and Milne on Tannakian
categories in [DMOS82] (also downloadable from Milne’s website): this one
is very nicely written and easy to follow, but you must get to the end of it,
where they speak of motives for absolute Hodge cycles.

The least painful introduction to mixed Hodge theory for someone with
a complex-analytic background and therefore used to C∞ forms (such as
yourselves after attending Simon’s lectures) is [GS75]. I warn you, however,
that this paper is long and hard; it is long-winded and dated and doesn’t go
very far; on the plus side, it gives an introduction to more advanced topics
such as the SL2-orbit theorem and nilpotent orbit theorem (degenerations of
HS).

For Grothendieck’s algebraic de Rham theorem, I totally recommend the
original paper [Gro66]: it is short, it is clear, it is written in English. (I
mention this because, sadly, it may make a difference to you. It makes
no difference to me.) Reasons why spectral sequences of topological origin
degenerate in algebraic geometry are given in [DI87] and [Del68]: both papers
are nice and (relatively speaking) readable.

A very concise summary in the topological setting of the derived cat-
egory of cohomologically constructible (complexes of) sheaves and the six
operations is in [GM83, §1].

The material on extensions of mixed Hodge structures is explained really
well in the paper of Jim Carlson [Car80].

If you are serious about studying MHS, then even today you have to go
back to the papers by Deligne. Hodge II [Del71] is readable (but very tough)
and I recommend it without much hesitation. The global invariant cycle
theorem is Theorem 4.1.1 in Hodge II. The main problem with Hodge III
[Del74] is that you need to know in advance Deligne’s theory of cohomological
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descent. The original presentation in SGA4 is a prime example of how a pure
thinker (alchemist) can trasmute something that is at bottom really simple
(the alchemical equivalent of gold) into something extremely complicated
(the alchemical equivalent of a much baser metal or substance). I believe
that this single fact is the perverse reason why mixed Hodge theory still has
a reputation for being a black art, and so few algebraic geometers can use
it confidently. Fortunately Brian Conrad did a huge service to humanity
by writing up this theory in (almost) human-readable from in a note titled
Cohomological Descent available for download from his website.

At this point you will know the basics. From now on the road is even
steeper. The theory of mixed Hodge modules is due to Morihiko Saito. A
nice summary of how things work is in his unpublished RIMS preprint On
the formalism of mixed sheaves (it’s on the arXiv).
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