Number Theory Example Sheet 3 Michaelmas 2003

Dr Alessio Corti

14th November, 2004

(Questions marked with a * are optional.)

(1) (a) Find all bases b modulo 15 with $b \not\equiv \pm 1 \mod 15$, for which 15 is a pseudoprime.

(b) Prove that there are 36 bases b modulo 91 for which 91 is a pseudoprime.

(c) Show that if p and 2p-1 are both prime numbers, and n = p(2p-1), then n is a pseudoprime for precisely half of all possible bases modulo n.

(2) Let n = pq be the product of two distinct odd primes.

(a) Set d = (p - 1, q - 1). Prove that n is a pseudoprime to the base b if and only if $b^d \equiv 1 \mod n$. Show that there are d^2 bases to which n is a pseudoprime.

(b) How many bases are there to which n is a pseudoprime if q = 2p + 1? List all of them (in terms of p).

(c) For n = 341, what is the probability that a randomly chosen b prime to n is a base to which n is a pseudoprime?

(3) (a) Find all Carmichael numbers of the form 5pq where p and q are prime.
[Hint: We showed in class that 561 is the only Carmichael number of the form 3pq. Use the same method.]

(b*) Prove that for any fixed prime r there are only finitely many Carmichael numbers of the form rpq.

[Use the same method you used in part (a).]

(4) Suppose that m is a positive integer such that 6m + 1, 12m + 1, and 18m + 1 are all primes. Let n = (6m + 1)(12m + 1)(18m + 1). Prove that n is a Carmichael number.

(5) Let b > 1 be an integer. Let p be a odd prime which does not divide b, b-1 or b+1. Put $n = (b^{2p} - 1)/(b^2 - 1)$. Prove that n is composite, 2p|n-1, and n is a pseudoprime to the base b. Thus, there are infinitely many *composite* integers which are pseudoprimes to the base b.

- (6) Let n = p(2p 1) as in question 1(c).
 - (a) Prove that n is an Euler pseudoprime to 25% of the bases.
 - (b) If $p \equiv 3 \mod 4$, n is a strong pseudoprime to 25% of the bases.
- (7) Use Fermat factorization to factor: 8633; 809009; 4601.

(8) Prove that, if n has a factor that is within $\sqrt[4]{n}$ of \sqrt{n} , then Fermat factorization works on the first try (i.e., for $t = \sqrt{n} + 1$).

(9) (a) Let n = 2701. Use the *B*-numbers 52 and 53 for a suitable factor base *B* to factor 2701.

(b) Let n = 4633. Use the *B*-numbers 68, 152 and 153 for a suitable factor base *B* to factor 4633.

(10) Find the rational approximation with the smallest denominator, which is strictly closer to π than $\frac{355}{113}$.

(11) Determine the continued fraction expansions of $\sqrt{2}$, $\sqrt{3}$, $\sqrt{21}$, $\frac{24-\sqrt{15}}{17}$.