Pisa Examples

Alessio Corti

London, 30th May 2008

Abstract

This is a list of exercises to go with my course¹ "New methods in orbifold Gromov-Witten theory" in Pisa, June 15–22 2008. The aim is to develop common-sense and feeling for Gromov-Witten theory of stacks through simple examples rather than general formalism.²

Contents

1	Orbi-curves	1
2	Gromov-Witten invariants of stacks: basic examples	3
3	Toric stacks practice	11
4	Quantum Cohomology systematics	12

1 Orbi-curves

This is a series on the basics of orbi-curves. An orbi-curve is a nodal twisted curve $(\mathfrak{C}, x_i(r_i))$ where all points with non-trivial stabiliser are marked with an isomorphism $G_{x_i} = \mu_{r_i}$ (sometimes I omit the marked points from the notation).

¹I apologise to those involved but this text contains no references, but I do want to thank my collaborators Tom Coates, Hiroshi Iritani and Hsian-Hua Tseng who taught me almost all I know about Gromov-Witten theory

²I expect that this text contains several misprints. Sorry.

(1) (i) Persuade yourselves that the orbifold fundamental group of a smooth orbi-curve $(\mathfrak{C}, x_i(r_i))$ is

$$\pi_1^{\mathrm{orb}}\mathfrak{C} = \pi_1 (\mathfrak{C} \setminus \{x_i\}) / \langle \gamma_i^{r_i} \rangle$$

where γ_i are small loops around the punctures.

- (ii) Let $\mathfrak C$ be a smooth orbi-curve and G a finite group. Show that to give a representable morphism $\mathfrak C \to BG$ is equivalent to give a group homomorphism $\pi_1^{\operatorname{orb}}\mathfrak C \to G$ which sends each γ_i to an element of order r_i . The data is also equivalent to give a principal G-bundle on $\mathfrak C$, that is a space $\pi \colon G \curvearrowright E \to C$ (where C is the coarse moduli space of $\mathfrak C$) which is a principal G-bundle over $G \setminus \{x_i\}$ and has inertia group μ_{r_i} above x_i .
- (2) Show Riemann-Roch and Serre duality for an orbi-curve $\mathfrak C$. For example, if L is a line bundle, then we get representations of μ_{r_i} on the fibre L_{x_i} of L at x_i and a Riemann-Roch formula

$$\chi(\mathfrak{C}, L) = \deg L + 1 - g - \sum \frac{k_i}{r_i}$$

(3) If $(\mathfrak{C}; x_i(r_i))$ is a n-pointed orbi-curve and $f: (\mathfrak{C}; x_i(r_i)) \to \mathfrak{X}$ is a stable representable morphism, then $f^*T_{\mathfrak{X}}$ makes sense is an orbi-bundle and $\mu_{r_i} = G_{x_i}$ acts through the representation into $G_{f(x)}$; we label the representation at x_i by its weights $0 \le w_{i,j} < r_i$; persuade yourself that the expected dimension of the moduli space is

$$\dim \mathfrak{X}_{0,n,\beta} = \chi \left(\mathfrak{C}, f^* T_{\mathfrak{X}} \right) + n - 3 =$$

$$= -K_{\mathfrak{X}} \cdot \beta + \dim \mathfrak{X} + n - 3 - \sum_{i=1}^{n} \sum_{j=1}^{\dim \mathcal{X}} \frac{w_{i,j}}{r_i}$$

[Hint. Denote by

$$\mathbb{L}_f^{\bullet} = f^* \Omega_{\mathfrak{X}}^1 \to \Omega_{\mathfrak{C}}^1$$

the cotangent complex of the morphism f. The deformation theory of f is controlled by the hyperext algebra $\operatorname{Ext}^{\bullet}(\mathbb{L}_f, \mathcal{O}_{\mathfrak{C}})$.

(4) Let $f: (\mathfrak{C}, x_i(r_i)) \to \mathfrak{X}$ be a stable morphism. Let us assume that f is a embedding locally at every point of \mathfrak{C} . In this case, there is a locally free sheaf N_f , the *normal bundle* of f, defined by the sequence

$$0 \to N_f^\vee \to \Omega^1_{\mathfrak{X}} \to \Omega^1_{\mathfrak{C}} \to 0$$

This needs to be taken with a pinch of salt: show that, when \mathfrak{C} has nodes, the natural sheaf homomorphism $T_{\mathfrak{X}} \to N_f$ is not surjective.

(5) Find concrete models for the moduli stacks of stable morphisms of degree ≤ 2 from orbi-curves to $\mathbb{P}(1,1,2)$. Determine which components have the correct dimension, which are smooth as Deligne-Mumford stacks, and the nature of all the singular points.

[Degree two is very tough, but try to do at least the case of morphisms of degree 3/2.]

- (6) Give a sensible definition of a "stacky" topological Euler number of a smooth stack curve. State some properties of the topological Euler number. Let C be a smooth proper curve and G a finite group acting on C: calculate the stacky topological Euler number of the stack [C/G] in terms of vertices, edges and faces of a G-invariant cellular decomposition of C.
- (7) (i) Given a Deligne-Mumford stack \mathfrak{X} , build a model for the simplicial stack made of moduli stacks $\mathfrak{X}_{0,\bullet,0}$ of genus 0 \bullet -pointed stable morphisms of degree 0 in terms of "higher inertia" stacks \mathfrak{X}_{\bullet} . Carefully identify all degeneracy and face maps.
- (ii) Build a model for the moduli stack $\mathfrak{X}_{1,1,0}$ of genus 1 1-pointed stable morphisms of degree 0. Be careful: this is rather tricky. For instance if $\mathfrak{X} = BG$, then $\mathfrak{X}_{1,1,0}$ is a moduli stack of G-twisted covers.

2 Gromov-Witten invariants of stacks: basic examples

In each of the following questions, you are asked to compute the small quantum orbifold cohomology of a simple explicit stack \mathfrak{X} naïvely from the definition. This is hard work but it does give a "body" to a very abstract formalism.

If $\mathbf{w} = (w_0, \dots, w_n)$ is an integer vector and $\mathfrak{X} = \mathbb{P}^{\mathbf{w}}$ the corresponding weighted projective space, than the components of the inertia stack are in 1-to-1 correspondence with the set

$$F = \left\{ rac{k_i}{w_i} \mid i = 0, \ldots, n; \quad 0 \leq k_i < w_i
ight\}$$

We denote by $\mathfrak{X}_{0,n,d}(f_1,\ldots,f_n)$ the connected component of $\mathfrak{X}_{0,n,d}$ of stable morphisms which "evaluate" in the components of inertia corresponding to $f_1,\ldots,f_n\in F$.

I often confuse degree in cohomology with degree in the Chow ring—please sort out the factors of 2 on your own.

- (8) $\mathfrak{X} = \mathbb{P}(1,1,3)$ (i) Show that $H_{\text{orb}}^{\bullet}\mathfrak{X}$ is generated as a vector space by classes $\mathbf{1}, \eta_{\frac{1}{3}}, A = \mathcal{O}(1), \eta_{\frac{2}{3}}, A^2$ in cohomology degrees 0, 2/3, 1, 4/3, 2.
 - (ii) Show directly from the definition that

$$\eta_{\frac{1}{3}} \cup \eta_{\frac{1}{3}} = \eta_{\frac{2}{3}}, \quad \text{and} \quad \eta_{\frac{1}{3}} \cup \eta_{\frac{2}{3}} = A^2 = \frac{1}{3} \text{pt.}$$

[Hint. For the first one look for constant representable morphisms in $\mathfrak{X}_{0,3,0}(\frac{1}{3}^3)$. Note that the last point evaluates with inversion in $\mathbb{P}(3)_{\frac{2}{3}}$. The moduli space has virtual dimension 0+2-2/3-2/3=0; etc.

For the second look for constant representable morphisms in $\mathfrak{X}_{0,3,0}(1/3,2/3,0)$; the expected dimension of the moduli space is 0+2-2/3-4/3=0; the relevant component of the moduli space is isomorphic to $\mathbb{P}(3)$; by definition

$$\eta_{\frac{1}{3}} \cup \eta_{\frac{2}{3}} = e_{3*} \mathbf{1} = \frac{1}{3} \text{pt}$$

—whatever it is, it has degree $\int_{\mathbb{P}(3)} \mathbf{1} = 1/3$.]

Finally, it is clear that $\eta_{\frac{2}{3}} \cup \eta_{\frac{2}{3}} = 0$; indeed, $\mathfrak{X}_{0,3,0}(\frac{2}{3}^3)$ has virtual dimension 0 + 2 - 4/3 - 4/3 < 0.

(iii) First note that codim $q = \frac{1+1+3}{1\times 1\times 3} = 5/3$ (why?). In the basis above, write down the matrix of quantum multiplication by A:

$$M = egin{pmatrix} 0 & aq^{rac{1}{3}} & 0 & 0 & 0 \ 0 & 0 & 0 & bq^{rac{1}{3}} & 0 \ 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & cq^{rac{1}{3}} \ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

and show that a = b = c = 1/3 by interpreting the unknown entries a, b, c in terms of stacky Gromov-Witten invariants.

[Hints: First, from $A * \eta_{\frac{1}{3}} = 1$ and integrating against A^2 :

$$1/3 \, aq = \deg A^2 \, aq = \langle 1, A^2 \rangle \, aq = \langle A * \eta_{\frac{1}{3}}, A^2 \rangle = \langle A, \eta_{\frac{1}{3}}, A^2 \rangle_{1/3} \, q$$

or

$$a = 3 \int_{\mathfrak{X}_{0,3,1/3}} e_1^*(A) \cup e_2^*(\eta_{\frac{1}{3}}) \cup e_3^*(A^2) \cap e(E).$$

Here $\mathfrak{X}_{0,3,1/3}$ parameterises representable morphisms with image a curve of degree 1/3 on \mathfrak{X} ; knowing what these curves are, we must be looking at $\mathfrak{X}_{0,3,1/3}(0,1/3,0)$; the virtual dimension is

$$\dim \mathfrak{X}_{0,3,1/3}(0,1/3,0) = 5/3 + 2 - 2/3 = 3.$$

The virtual dimension is the actual dimension and the problem is unobstructed; you can integrate:

$$a = 3 \int_{\mathfrak{X}_{0,3,1/3}} e_1^*(A) \cup e_2^*(\eta_{\frac{1}{3}}) \cup e_3^*(A^2) =$$

$$= \int_{\mathfrak{X}_{0,2,1/3}} e_1^*(A) \cup e_2^*(\eta_{\frac{1}{3}}) = \int_{\mathbb{P}(1,3)} A = \frac{1}{3}$$

Sanity check: $a=3\langle A,\eta_{\frac{1}{3}},A^2\rangle_{1/3}=\langle A,\eta_{\frac{1}{3}},3A^2\rangle_{1/3}=$ (by the divisor axiom) = $1/3\langle \eta_{\frac{1}{3}},\operatorname{pt}\rangle_{1/3}=1/3$: there is just one orbi-line of degree 1/3 that passes through the singular point and one additional general point. The corresponding stable morphism has no automorphisms, hence this line contributes with "multiplicity 1" to $\langle \eta_{\frac{1}{3}},\operatorname{pt}\rangle_{1/3}$.

Second, from $A*\eta_{\frac{2}{2}}=bq\,\eta_{\frac{1}{2}},$ we derive

$$\frac{1}{3}b = b \langle \eta_{\frac{1}{3}}, \eta_{\frac{2}{3}} \rangle = \langle A, \eta_{\frac{2}{3}}, \eta_{\frac{2}{3}} \rangle_{1/3}$$

The relevant moduli space is $\mathfrak{X}_{0,3,1/3}(1,2/3,2/3)$; it has expected dimension

$$5/3 + 2 - 4/3 - 4/3 = 1$$
.

The only way to achieve this is by gluing a morphism in $\mathfrak{X}_{0,3,0}(\frac{2}{3}^3)$ with one in $\mathfrak{X}_{0,2,1/3}(1/3,0)$; the two orbi-curves glue as a nontrivial twisted curve and the map is constant on the first component. This space is two dimensional; we have to deal with a one-dimensional obstruction bundle. Note that the first component is in $\mathfrak{X}_{0,3,0}(\frac{2}{3}^3)$ which has negative virtual dimension $0+2-3\times(4/3)=-2$ but it is still there. Fortunately, we can calculate b using the associativity relations:

$$\begin{split} A^2*\eta_{\frac{2}{3}} &= A*(A*\eta_{\frac{2}{3}}) = bqA*\eta_{\frac{1}{3}} = abq^2\mathbf{1}, \quad \text{hence} \\ &abq^2 = \langle A^2*\eta_{\frac{2}{3}}, \text{pt} \rangle = \langle A^2, \eta_{\frac{2}{3}}, \text{pt} \rangle_{\frac{2}{3}} \, q^2. \end{split}$$

Figure 1: $\mathfrak{X}_{0,3,\frac{1}{3}}(0,\frac{2}{3},\frac{2}{3})$

We calculate an integral over $\mathfrak{X}_{0,3,2/3}(0,2/3,0)$; the generic point of this moduli space is a stable morphism from a reducible curve with three components: The key thing to keep in mind is that the corre-

Figure 2: $\mathfrak{X}_{0,3,\frac{2}{3}}(0,\frac{2}{3},0)$

sponding morphism always has a μ_3 of automorphisms over $\mathbb{P}(1,1,3)$, coming from the central component \mathfrak{C} on which the morphism is constant. The central component maps to $B\mu_3$ and it carries an induced μ_3 -bundle; this bundle has a μ_3 of automorphisms which survive as nontrivial automorphisms of \mathfrak{C} over $B\mu_3$. Having said this, we can now calculate b:

$$ab = \frac{1}{3}b = \frac{1}{3}\int_{\mathfrak{X}_{0,3,2/3}(0,2/3,0)} e_1^*(\mathrm{pt}) \cup e_2^*(\eta_{\frac{2}{3}}) \cup e_3^*(\mathrm{pt}) = \frac{1}{3}\int_{\mathbb{P}(3)} \mathbf{1} = \frac{1}{9}$$

that is, b = 1/3.

Third, show that c = a. Indeed, from $A * A^2 = cq \eta_{\frac{2}{3}}$, we get

$$1/3 \, cq = cq \, \deg\langle \eta_{\frac{2}{3}} \cup \eta_{\frac{1}{3}} \rangle = cq \langle \eta_{\frac{2}{3}}, \eta_{\frac{1}{3}} \rangle = \langle A, A^2, \eta_{\frac{1}{3}} \rangle_{1/3} \, q$$

and $c=3\langle A,A^2,\eta_{\frac{1}{3}}\rangle_{1/3}=\langle A,\mathrm{pt},\eta_{\frac{1}{3}}\rangle_{1/3}=1/3\langle\mathrm{pt},\eta_{\frac{1}{3}}\rangle_{1/3}=1$ as before.]

(iv) Let $D = q \frac{d}{dq}$ and consider the quantum differential equation

$$D\Psi = \Psi M$$
 for $\Psi \colon \mathbb{C}^{\times} \to \operatorname{End} H^{\bullet}_{\operatorname{orb}}(\mathfrak{X}, \mathbb{C}).$

In the given basis, write $\Psi = (\psi_0, \dots, \psi_n)$ where ψ_i are column vectors; find the ordinary differential equation satisfied by ψ_0 . [Hint.

$$3^{3}(D-2/3)(D-1/3)D^{3}\psi_{0} = 3^{3}(D-2/3)(D-1/3)D^{2}\psi_{2} =$$

$$3^{3}(D-2/3)(D-1/3)D\psi_{4} = 3^{2}(D-2/3)(D-1/3)q^{1/3}\psi_{3} =$$

$$3^{2}q^{1/3}(D-1/3)D\psi_{3} = 3q^{1/3}(D-1/3)q^{1/3}\psi_{1} =$$

$$3q^{2/3}D\psi_{1} = q\psi_{0}$$

(9) $\mathfrak{X} = \mathbb{P}(2,2,2)$ (i) Persuade yourself that $\mathfrak{X} = \mathbb{P}(2,2,2)$ is the moduli stack of square roots of $\mathcal{O}(1)$ on \mathbb{P}^2 . In other words, $\mathbb{P}(2,2,2)$ is characterised by the following universal property: there is an étale morphism $\pi \colon \mathfrak{X} \to \mathbb{P}^2$ of degree 1/2 and, for any stack \mathfrak{Y} , to give a morphism $f \colon \mathfrak{Y} \to \mathfrak{X}$ is equivalent to give a morphism $g \colon \mathfrak{Y} \to \mathbb{P}^2$, a line bundle L on \mathfrak{Y} , and an isomorphism

$$L^{\otimes 2} \to g^* \mathcal{O}(1).$$

(This should help you maintain sanity as you work on this question.)

(ii) Show that the orbifold cohomology of \mathfrak{X} is generated by classes $A = c_1 \mathcal{O}(1)$ of codimension 2 and $\int_{\mathfrak{X}} A^2 = 1/8$, and w of codimension 0, with the relations

$$w^2 = 1, \quad A^3 = 0.$$

(iii) Show that, in the basis

$$1, A, A^2, w, wA, wA^2$$

of $H_{\text{orb}}^{\bullet}\mathfrak{X}$, quantum multiplication by A is given by the matrix:

$$M = egin{pmatrix} 0 & 0 & 0 & 0 & rac{1}{8}q^{rac{1}{2}} \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & rac{1}{8}q^{rac{1}{2}} & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

[Hint. For instance:

$$\langle A, A^2, wA^2 \rangle_{\frac{1}{2}} = \frac{1}{2} \langle A^2, wA^2 \rangle_{\frac{1}{2}} =$$

$$= \frac{1}{2} \int_{\mathfrak{X}_{0,2,\frac{1}{2}}(1/2,0)} e_1^*(A^2) e_2^*(wA^2) = \frac{1}{2} \int_{\mathfrak{X} \times \mathbb{P}^2} \operatorname{pr}_1^*(A^2) (s \circ \operatorname{pr}_2)^*(A^2) =$$

$$= \frac{1}{2} \left(\int_{\mathfrak{X}} A^2 \right) \left(\int_{\mathbb{P}^2} s^* A^2 \right) = \frac{1}{2} \times \frac{1}{8} \times \frac{1}{4}$$

where $s: \mathbb{P}^2 \to \mathfrak{X}$ is the non-existing "section" of degree 2.]

(iv) Conclude that the small quantum orbifold cohomology of $\mathfrak X$ is generated by w,A with relations:

$$w^2 = 1, \quad A^3 = \frac{1}{8}q^{\frac{1}{2}}w$$

(v) Show that ψ_0 —cf. Q 8(4)—satisfies the "expected" hypergeometric differential operator

$$8D^3(2D-1)^3-q$$

where $D = q \frac{d}{dq}$.

(10) Cubic surface (i) Let $X = X_3^2 \subset \mathbb{P}^3$ be a nonsingular cubic surface. Let A be the class of a hyperplane section and consider the subspace of $H^{\bullet}X$ with basis $1, A, A^2 = 3pt$. Show that quantum multiplication by A preserves this subspace and it is given by the matrix

$$M = \begin{pmatrix} 0 & 108q^2 & 756q^3 \\ 1 & 9q & 108q^2 \\ 0 & 1 & 0 \end{pmatrix}$$

[Hint. The relevant enumerative information is: $\langle A, A, A \rangle_1 = 27$, $\langle A, A, A^2 \rangle_2 = 12 \langle \text{pt} \rangle_2 = 12 \times 27$, $\langle A, A^2, A^2 \rangle_3 = 27 \times \langle \text{pt}, \text{pt} \rangle_3 = 27 \times 84$.]

(ii) This is one of the simples examples of a mirror theorem: $e^{6q}\psi_0$ —cf. Q 8(4)—satisfies the hypergeometric operator

$$D^3 - 3q(3D+1)(3D+2).$$

- (11) Degree two del Pezzo $X=X_4^2\subset \mathbb{P}(1^3,2)$ Make a similar discussion for the del Pezzo surface of degree $2,\ X=X_4^2\subset \mathbb{P}(1^3,2)$:
 - (i) In the obvious basis

$$M = egin{pmatrix} 0 & 552q^2 & 7,488q^3 \ 1 & 28q & 552q^2 \ 0 & 1 & 0 \end{pmatrix}$$

(For instance, $7,488 = 6 \times 1248$, where 1248 is the number of cubics through two general points of X.)

- (ii) Make contact with the appropriate hypergeometric differential operator $D^3 4q(4D+1)(4D+3)$.
- (12) $\mathfrak{X} = X_3^2 \subset \mathbb{P}(1^3, 2)$ (i) Note that \mathfrak{X} can be written as

$$(yx_0 + a_1(x_2, x_3) = 0) \subset \mathbb{P}(1^3, 2)$$

Build a mental picture of \mathfrak{X} by studying the obvious birational map $\mathfrak{X} \longrightarrow \mathbb{P}^2$: \mathfrak{X} is obtained by blowing up three collinear points and contracting the proper transform of the line $(x_0 = 0)$. Let $A = \mathcal{O}_{\mathfrak{X}}(1)$. In particular, on \mathfrak{X} , there are:

- Three 'lines' of A-degree 1/2;
- Three fibrations by 'conics' of A-degree 1;
- One map to \mathbb{P}^2 .
- (ii) Convince yourself that the orbifold cohomology of \mathfrak{X} has basis $1, A, \eta, A^2$ in degrees 0, 1, 1, 2; deg $A^2 = 3/2$ and deg $\eta^2 = 1/2$.
- (iii) Use the information in (i) to show that quantum multiplication by A is given in this basis by the following matrix where codim q=2:

$$M = egin{pmatrix} 0 & q\langle A, A, \mathrm{pt}
angle_1 & 0 & 0 \ 1 & 0 & rac{2}{3}q^{rac{1}{2}}\langle A, \eta, A
angle_{rac{1}{2}} & q\langle A, \mathrm{pt}, A
angle_1 \ 0 & 2q\langle A, A, \eta
angle_{rac{1}{2}} & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix} = \ = egin{pmatrix} 0 & 3q & 0 & 0 \ 1 & 0 & rac{1}{2}q^{rac{1}{2}} & 3q \ 0 & rac{3}{2}q^{rac{1}{2}} & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

(iv) Verify directly that the cyclic vector ψ_0 —cf. Q 8(4)—satisfies the 'expected' hypergeometric operator

$$2D^3(2D-1) - 3q(3D+1)(3D+2).$$

[Hint: First rewrite $D\psi = \psi M$ in the new basis

$$\phi_0 = \psi_0 \ \phi_1 = D\psi_0 = \psi_1 \ \phi_2 = \psi_3 + \frac{3}{2}q^{\frac{1}{2}}\psi_2 \ \phi_3 = \psi_2$$

A small calculation shows that the equation in the new basis is:

$$D\Phi = \Phi egin{pmatrix} 0 & 3q & 0 & 0 \ 1 & 0 & rac{15}{4}q & rac{1}{2}q^{rac{1}{2}} \ 0 & 1 & 0 & 0 \ 0 & 0 & rac{3}{4}q^{rac{1}{2}} & 0 \end{pmatrix}$$

In this form it is easy to calculate the equation satisfied by $\phi_0 = \psi_0$.

(v) Show that the quantum products calculated in (iii), together with associativity, determine the whole small quantum cohomology ring. In particular, show that this determines the curious Gromov-Witten number:

$$\langle \eta, \eta, \eta \rangle_{\frac{1}{2}} = -\frac{3}{4}.$$

(vi) The direct calculation of the number in (v) leads to a beautiful case study in excess intersection theory: the expected dimension of the

Figure 3: $\mathfrak{X}_{0,3,1/2}(\frac{1}{2}^3)$

moduli space is $1+2-3\times 1=0$; however, the picture shows an actual moduli space of dimension 1 (the four points on the component on which the morphism to X is constant). If you feel brave enough, calculate $\langle \eta, \eta, \eta \rangle_{\frac{1}{2}} = -\frac{3}{4}$ by a study of the virtual class.

3 Toric stacks practice

- (13) Show that $\operatorname{Pic} \mathbb{P}_{r_1,r_2} = \mathbb{Z} \oplus \mathbb{Z}/_{\operatorname{hcf}(r_1,r_2)\mathbb{Z}}$ directly from the definition.
- (14) Consider the action of $G = \mathbb{C}^{\times 2}$ on \mathbb{C}^4 by the weights

$$\begin{pmatrix}
1 & 1 & 0 & -n \\
0 & 0 & 1 & 1
\end{pmatrix}$$

(where n > 0 is a positive integer).

- (i) Persuade yourself that the group of G-linearised line bundles is $\mathbb{L}^{\vee}=\mathbb{Z}^2.$
- (ii) Show that there are two stability conditions for linearised line bundles, carefully write down the unstable loci for each, and identify the two geometric quotients as $\mathbb{P}(1,1,n)$ and \mathbb{F}_n .
- (iii) Choose coordinate charts around the two cusps of the Kähler moduli space and write down the GKZ operators in each chart.
- (15) Consider the *n*-dimensional weighted projective space $\mathbb{P}^{\mathbf{w}} = \mathbb{P}(w_0, \ldots, w_n)$ with the obvious diagonal actions by $\mathbb{C}^{\times n+1}$ (ineffective) and by the quotient *n*-dimensional torus $\mathbb{T}^n = \mathbb{C}^{\times n+1}/\mathbb{C}^{\times}$ (effective).
- (i) Persuade yourself that a degree d "T-fixed" (whatever this means!) morphism $f \colon \mathbb{P}^1 \to \mathbb{P}^{\mathbf{w}}$ can be written in the form:

$$\begin{cases} x_i = z_0^{dw_i} \\ x_j = z_1^{dw_j} \\ x_k = 0 \quad \text{if} \quad k \neq i, j \end{cases}$$

(ii) Prove that, as a representation:

$$\chi_{\mathbb{T}}(f^*T_{\mathbb{P}^{\mathbf{w}}}) = \left(\bigoplus_{k} \bigoplus_{\substack{a+b=dw_k \\ a,b \geq 0}} \mathbb{C}\left(\frac{a}{dw_i}\chi_i + \frac{b}{dw_j}\chi_j - \chi_k\right)\right) \Big/_{\mathbb{C}}$$

$$\in H_{\mathbb{T}}^{\bullet}\{\text{pt}\}$$

(The lattice M of characters of \mathbb{T} fits in an exact sequence:

$$0 \to M \to \mathbb{Z}^{n+1} \stackrel{(\mathbf{w})}{\to} \mathbb{Z}.)$$

[Hint. Start with the \mathbb{T} -equivariant Euler sequence on $\mathbb{P}^{\mathbf{w}}$:

$$0 \to \mathcal{O} \to \bigoplus_k \mathcal{O}(w_k P - \chi_k) \to T_{\mathbb{P}^{\mathbf{w}}} \to 0.$$

(iii) Use the general theory developed in class to generalise this calculation to arbitrary stable representable morphism $\mathbb{P}_{r_1,r_2} \to \mathbb{P}^{\mathbf{w}}$.

4 Quantum Cohomology systematics

- (16) Using the recipe given in class, write down presentations for the extended quantum equivariant orbifold cohomology of $\mathbb{P}(1,2)$ and $\mathbb{P}(1,1,3)$. Study the classical and non-equivariant limits and persuade yourself that everything fits together nicely.
- (17) The purpose of this question is to demonstrate, by looking at the simple case $\mathfrak{X} = \mathbb{P}(1, 1, 2)$, that knowledge of the small J-function is sufficient (in fact, the first few coefficients of the asymptotic expansion in 1/z are sufficient) to determine the small quantum cohomology.
- (i) Following the recipe given in class, write the small J-function of $\mathbb{P}(1,1,2)$ as:

$$J(t;z) = ze^{rac{Pt}{z}} \Big(1 + \sum_{d \geq 1} rac{Q^d e^{dt}}{(P+z)^2 \cdots (P+dz)^2 (2P+z) \cdots (2P+2dz)} + 1_{rac{1}{2}} \sum_{d > 0} rac{Q^{d+rac{1}{2}} e^{d+rac{1}{2}}}{ig(P+rac{1}{2}zig)^2 \cdots ig(P+(d+rac{1}{2})zig)^2 ig(2P+zig) \cdots ig(2P+(2d+1)zig)} \Big)$$

(ii) Show that the small J-function satisfies the differential equation:

$$2z^4 \frac{d^3}{dt^3} \left(2\frac{d}{dt} - 1 \right) - Qe^t = 0$$

(iii) Show that:

$$J(t;z) = z\mathbf{1} + P^2 \frac{t^2}{2z} + \mathbf{1}_{\frac{1}{2}} \frac{4Q^{\frac{1}{2}}e^{\frac{t}{2}}}{z^2} + \mathbf{1}\frac{Qe^t}{2z^3} + O\left(\frac{1}{z^4}\right)$$

(iv) Consider the small *J*-function as a column vector in the basis $1, P, P^2, \mathbf{1}_{\frac{1}{2}}$. Define the *S-matrix* as follows:

$$S := \left(J, z \frac{d}{dt} J, z^2 \frac{d^2}{dt^2} J, 2Q^{-\frac{1}{2}} e^{-\frac{t}{2}} z^3 \frac{d^3}{dt^3} J\right)$$

Use the expansion above to shows that S(0) = identity.

(v) Prove that the S-matrix, as defined above, satisfies the differential system

$$zrac{d}{dt}S=SM, \quad ext{where} \quad M=egin{pmatrix} 0 & 0 & 0 & rac{Q^{rac{1}{2}}e^{rac{t}{2}}}{2} \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & rac{Q^{rac{1}{2}}e^{rac{t}{2}}}{2} & 0 \end{pmatrix}$$

(vi) Convince yourself that M is the matrix of quantum multiplication by P in the basis $\mathbf{1}, P, P^2, \mathbf{1}_{\frac{1}{2}}$.

[Hint. You must use the general theory; in particular, the properties of the big J-function.]

(18) Consider the 2-dimensional toric stacks $\mathfrak X$ with fan and divisor diagrams:

$$\rho = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -3 & -2 \end{pmatrix} : \mathbb{Z}^2 \to N = \mathbb{Z}^2, \quad \text{and}$$

$$D = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix} : \mathbb{Z}^{*\,2} \to \mathbb{L}^{\vee} = \mathbb{Z}^2.$$

- (i) Find an explicit identification of the coarse moduli space X with the ruled surface \mathbb{F}_3 . Denote by A and B the natural divisors on \mathbb{F}_3 —the fibre and the negative section. Show that \mathfrak{X} can be interpreted as the moduli space of square roots of B—cf. Q 9(i), and make sure that \mathfrak{X} contains a substack $\{x_4=0\}$ supported on B and isomorphic to $\mathbb{P}(2,2)$. Identify the integral Chow ring $\mathrm{CH}^{\bullet}(\mathfrak{X},\mathbb{Z})$ with the subring of $\mathrm{CH}^{\bullet}(X,\mathbb{Q})$ multiplicatively generated by A and B/2; the cycle class of $\mathbb{P}(2,2)\subset\mathfrak{X}$ is B/2.
 - (ii) Show that NE $\mathfrak{X} \subset \mathbb{L}_{\mathbb{R}} = \mathbb{R}^2$ is the cone of vectors

$$\begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \in \mathbb{R}^2 \quad \text{such that} \quad \begin{cases} l_1 \geq 0, & \text{and} \\ 3l_1 + 2l_2 \geq 0. \end{cases}$$

(iii) Show that $\Lambda \to \mathfrak{X}$ is the set of vectors

$$\begin{pmatrix} l_1 \\ l_2 \end{pmatrix} \in \text{NE } \mathfrak{X} \quad \text{such that} \quad \begin{cases} l_1 \in \mathbb{Z} \quad \text{and} \\ l_2 \in \frac{1}{2}\mathbb{Z}, \end{cases}$$

and the reduction function is $v\left(\begin{pmatrix} l_1 \\ l_2 \end{pmatrix}\right) = \langle \frac{l_2}{2} \rangle$.

(iv) Write down the small non-equivariant I-function of \mathfrak{X} in the natural integral basis $P_1=D_1,\,P_2=D_4$ of $\operatorname{Pic}\mathfrak{X}$ —and dual basis for $N_1(\mathfrak{X},\mathbb{Z})$. Stare at it. Then show that:

$$I^{\text{sm}}(Q, s; z) = z\mathbf{1} + s_1 P_1 + s_2 P_2 + Q_1 Q_2^{-\frac{3}{2}} e^{s_1 - \frac{3}{2}s_2} \mathbf{1}_{\frac{1}{2}} + O\left(\frac{1}{z}\right)$$
(1)

This shows that condition \sharp does not hold. More relevant, it is impossible to calculate the small quantum orbifold cohomology of \mathfrak{X} without using the extended I-function.

- (v) For $S = \left\{ \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$, write down the S-extended I-function. Calculate the mirror map.
- (vi) Calculate the first few terms of the asymptotic expansion in 1/z of the S-extended J-function $J_{\mathfrak{X}}^S$ and hence write a presentation of the small quantum cohomology of \mathfrak{X} . (Good luck. I can't tell you what you are supposed to get since I didn't do this: in fact, I appreciate if you show me your calculation.)