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Alessio Corti

London, 30" May 2008

Abstract

This is a list of exercises to go with my course! “New methods in
orbifold Gromov-Witten theory” in Pisa, June 15-22 2008. The aim
is to develop common-sense and feeling for Gromov-Witten theory of
stacks through simple examples rather than general formalism.?
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1 Orbi-curves

This is a series on the basics of orbi-curves. An orbi-curve is a nodal
twisted curve (C, T (TZ)) where all points with non-trivial stabiliser are
marked with an isomorphism G, = p,, (sometimes I omit the marked
points from the notation).

IT apologise to those involved but this text contains no references, but I do want to
thank my collaborators Tom Coates, Hiroshi Iritani and Hsian-Hua Tseng who taught me
almost all I know about Gromov-Witten theory

2T expect that this text contains several misprints. Sorry.



(1) (i) Persuade yourselves that the orbifold fundamental group of
a smooth orbi-curve (&, z;(r;)) is

¢ = mi (€ {zi}) /(0])

where ~; are small loops around the punctures.

(ii) Let € be a smooth orbi-curve and G a finite group. Show that
to give a representable morphism € — B( is equivalent to give a group
homomorphism 7¢™¢€ — G which sends each +y; to an element of order
r;. The data is also equivalent to give a principal G-bundle on €, that
is a space m: G ~ E — C (where C is the coarse moduli space of €)
which is a principal G-bundle over C \ {z;} and has inertia group u,,
above ;.

(2) Show Riemann-Roch and Serre duality for an orbi-curve €. For
example, if L is a line bundle, then we get representations of y,; on
the fibre L;, of L at z; and a Riemann-Roch formula

kA
x((’l,L):degL—I—l—g—Zf
2

(3) If (¢;zi(r;)) is a n-pointed orbi-curve and f: (€;z;(r;)) — X is
a stable representable morphism, then f*T% makes sense is an orbi-
bundle and p,; = Gy, acts through the representation into G(;); we
label the representation at z; by its weights 0 < w;; < r;; persuade
yourself that the expected dimension of the moduli space is

dim X, 3 = x(€, f*Tx) +n—3 =
n dimX

=—Kx-B+dimX+n—-3-> > %
(2

i=1 j=1

[Hint. Denote by
L} = [k — Q¢
the cotangent complex of the morphism f. The deformation theory of

f is controlled by the hyperext algebra Ext* (lLf, (’)C) ]

(4) Let f: (€,zi(r;)) — X be a stable morphism. Let us assume
that f is a embedding locally at every point of €. In this case, there is
a locally free sheaf Ny, the normal bundle of f, defined by the sequence

0— Ny = Q3 = Q=0
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This needs to be taken with a pinch of salt: show that, when € has
nodes, the natural sheaf homomorphism T — Ny is not surjective.

(5) Find concrete models for the moduli stacks of stable morphisms
of degree < 2 from orbi-curves to P(1,1,2). Determine which com-
ponents have the correct dimension, which are smooth as Deligne-
Mumford stacks, and the nature of all the singular points.

[Degree two is very tough, but try to do at least the case of mor-
phisms of degree 3/2.]

(6) Give a sensible definition of a “stacky” topological Euler number
of a smooth stack curve. State some properties of the topological
Euler number. Let C' be a smooth proper curve and G a finite group
acting on C": calculate the stacky topological Euler number of the stack
[C/G] in terms of vertices, edges and faces of a G-invariant cellular
decomposition of C.

(7) (i) Given a Deligne-Mumford stack X, build a model for the
simplicial stack made of moduli stacks X0 of genus 0 e-pointed
stable morphisms of degree 0 in terms of “higher inertia” stacks X,.
Carefully identify all degeneneracy and face maps.

(ii) Build a model for the moduli stack X1 of genus 1 1-pointed
stable morphisms of degree 0. Be careful: this is rather tricky. For
instance if X = BG, then X1 1 is a moduli stack of G-twisted covers.

2 Gromov-Witten invariants of stacks:
basic examples

In each of the following questions, you are asked to compute the small
quantum orbifold cohomology of a simple explicit stack X naively from
the definition. This is hard work but it does give a “body” to a very
abstract formalism.

If w = (wp,...,wy) is an integer vector and X = PW¥ the cor-
responding weighted projective space, than the components of the
inertia stack are in 1-to-1 correspondence with the set

k.
F:{—z|i:0,...,n; ngi<w,~}
w;



We denote by X, 4(f1,---,fn) the connected component of X, 4 of
stable morphisms which “evaluate” in the components of inertia cor-
responding to fi,..., fn € F.

I often confuse degree in cohomology with degree in the Chow
ring—please sort out the factors of 2 on your own.
(8) X = P(1,1,3) (i) Show that HJ, X is generated as a vec-
tor space by classes l,n%,A = (’)(1),77%,A2 in cohomology degrees
0,2/3,1,4/3,2.

(ii) Show directly from the definition that

Un

1
N =n2, and n1Un: = A® = _pt.
3 3 3

3

ol
o=

[Hint. For the first one look for constant representable morphisms in
%0,3,0(%3). Note that the last point evaluates with inversion in P(3)2.

The moduli space has virtual dimension 0 +2 —2/3 —2/3 — 2/3:6;

etc.

For the second look for constant representable morphisms in X 3 9(1/3,2/3,0);

the expected dimension of the moduli space is 0+2 —2/3 —4/3 = 0;

the relevant component of the moduli space is isomorphic to P(3); by

definition

1
nLUn: = ezl = gpt

—whatever it is, it has degree fP(3) 1=1/3]

Finally, it is clear that 2 U nz = 0; indeed, %0’3,0@3) has virtual
dimension 0 +2 —4/3 —4/3 —4/3 < 0.

(iii) First note that codimq = 31+3 = 5/3 (why?). In the basis

1x1x3
above, write down the matrix of quantum multiplication by A:

Wi

a

o=

<

Il
co RO ©
co oo R
_-0 oo O
co oKk ©
o%Hooo

and show that a = b = ¢ = 1/3 by interpreting the unknown entries
a, b, ¢ in terms of stacky Gromov-Witten invariants.
[Hints: First, from A * 71 = lag and integrating against A%:
3
1/3 aq = deg A? aq = (1, A2> aq = (A * n%aA2> = <Aan%aA2>1/3 q
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or

0= 3/ e1(4) U el(n1) U e3(42) N e(BD).
X0,3,1/3

1
3

Here X(3,1/3 parameterises representable morphisms with image a
curve of degree 1/3 on X; knowing what these curves are, we must
be looking at X 3 1/3(0,1/3,0); the virtual dimension is

dim%0,371/3(0, 1/3,0) - 5/3 + 2 — 2/3 =3.

The virtual dimension is the actual dimension and the problem is
unobstructed; you can integrate:

a=3/ ¢i(A) Ueh(n:) U e(A2) =
X0,3,1/3 3

* * 1
- [ dwusm)=[ a-g
Xo,2,1/3 8 P(1,3)

Sanity check: a = 3(A,77%,A2)1/3 = (A,n%,3A2)1/3 = (by the divisor

axiom) = 1/3(77%,pt)1/3 = 1/3: there is just one orbi-line of degree

1/3 that passes through the singular point and one additional general

point. The corresponding stable morphism has no automorphisms,

hence this line contributes with “multiplicity 17 to (n L ,Pt)1/3-
Second, from A x N2 = bq 1, We derive

1
§b = b(n%,n%) = <Aa77%a77%>1/3

The relevant moduli space is X 3,1/3(1,2/3,2/3); it has expected di-
mension

5/3+2—4/3—4/3=1.

The only way to achieve this is by gluing a morphism in %0,3,0(%3)
with one in X(,/3(1/3,0); the two orbi-curves glue as a nontrivial
twisted curve and the map is constant on the first component. This
space is two dimensional; we have to deal with a one-dimensional
obstruction bundle. Note that the first component is in %0,3,0(§3)
which has negative virtual dimension 0 + 2 — 3 x (4/3) = —2 but it
is still there. Fortunately, we can calculate b using the associativity
relations:

A?xn2 = Ax (Axn2) =bgAxn1 =abg*l, hence
3 3 3

abg® = (A% x 13, pt) = (A%, 2, pt)2 ¢*.



X2

2/3

2/3
2/3 13

Figure 1: X 51 (0,%,2)

We calculate an integral over Xg32/3(0,2/3,0); the generic point of
this moduli space is a stable morphism from a reducible curve with
three components: The key thing to keep in mind is that the corre-

X1 X3

X
1/3 1/3

2/3 2/13 2/3

Figure 2: X532 (0,3,0)

sponding morphism always has a p3 of automorphisms over P(1,1, 3),
coming from the central component € on which the morphism is con-
stant. The central component maps to Bus and it carries an induced
ps-bundle; this bundle has a ug of automorphisms which survive as
nontrivial automorphisms of € over Bus. Having said this, we can
now calculate b:

1 1 1 1
ab= 1b= —/ ¢t(pt) U e3(n2) U 5 (pt) = —/ 1=1
3 3 Xo,3,2/3(0,2/3,0) 3 3 P(3) 9

that is, b = 1/3.
Third, show that ¢ = a. Indeed, from A x A? = cqn:, we get
3

1/3cq = cqdeg(n: Unz) = cqlnz, 1) = (A, A%, n1)1/3¢

and ¢ = 3<A7A2a77%>1/3 = <A,Pt;77%)1/3 = 1/3<Pta77%)1/3 =1 as be-
fore.]



(iv) Let D = qd% and consider the quantum differential equation
DY =9¥M for ¥U:C* — End Hj,(X%,C).

In the given basis, write ¥ = (¢, . . . , ¥, ) where 9; are column vectors;
find the ordinary differential equation satisfied by .
[Hint.

33(D —2/3)(D — 1/3) D34y = 33(D — 2/3)(D — 1/3) Dy =
3%(D —2/3)(D — 1/3)Dips = 3*(D — 2/3)(D — 1/3)q*4p3 =
32¢'/3(D — 1/3) D3 = 3¢"/3(D — 1/3)¢" 341 =

3¢** Dip1 = qapo]

(9) X =P(2,2,2) (i) Persuade yourself that X = P(2,2,2) is the
moduli stack of square roots of O(1) on P2. In other words, P(2,2,2)
is characterised by the following universal property: there is an étale
morphism 7: X — P? of degree 1/2 and, for any stack ), to give a
morphism f:9) — X is equivalent to give a morphism g: 9 — P2, a
line bundle L on ), and an isomorphism

L2 - g*O(1).

(This should help you maintain sanity as you work on this question.)
(ii) Show that the orbifold cohomology of X is generated by classes
A =c10(1) of codimension 2 and [, A> = 1/8, and w of codimension
0, with the relations
w?=1, A*=0.

(iii) Show that, in the basis
1,4, A%, w,wA, wA?
of HS, X, quantum multiplication by A is given by the matrix:

1
2

ool

o[
e
O OO oo

0
0
0
q
0
0

SO O o= O
O OO = OO
S RO O OO
_ o O O o O



[Hint. For instance:

(A, 4w A%y = (A% wA?),) =
]' * * 1 * *
-3/ GG wA) = 5 [ pri (A7) (s 0pn)"(4) =
X4,5,1(1/20) XxP2

where s: P2 — X is the non-existing “section” of degree 2.]
(iv) Conclude that the small quantum orbifold cohomology of X is
generated by w, A with relations:
1
wr=1, A3= —q%w
8
(v) Show that p—cf. Q 8(4)—satisfies the “expected” hypergeo-
metric differential operator

8D3(2D — 1) — ¢

where D = qdiq.

(10) Cubic surface (i) Let X = X2 C P3 be a nonsingular cubic
surface. Let A be the class of a hyperplane section and consider the
subspace of H*X with basis 1,4, 4% = 3pt. Show that quantum
multiplication by A preserves this subspace and it is given by the
matrix

0 108¢%> 75643
M=1[1 9q¢ 108¢>
0 1 0

[Hint. The relevant enumerative information is: (A, A, A); = 27,
<A7A7A2>2 = 12<pt>2 = 12 x 27, <A7A25A2)3 = 27 X <ptapt>3 =
27 x 84.]

(ii) This is one of the simples examples of a mirror theorem: €574p—
cf. Q 8(4)—satisfies the hypergeometric operator

D3 —3¢(3D +1)(3D +2).



(11) Degree two del Pezzo X = X7 C P(13,2) Make a similar
discussion for the del Pezzo surface of degree 2, X = X7 C P(13,2):
(i) In the obvious basis

0 552¢2 7,488¢3
M=|1 28 5524
0 1 0

(For instance, 7,488 = 6 x 1248, where 1248 is the number of cubics
through two general points of X.)

(ii) Make contact with the appropriate hypergeometric differential
operator D3 — 4¢q(4D + 1)(4D + 3).

(12) x = X?? C ]P’(13, 2) (i) Note that X can be written as
(yzo + a1(z2,23) = 0) C P(1%,2)

Build a mental picture of X by studying the obvious birational map
X —-» P?: X is obtained by blowing up three collinear points and
contracting the proper transform of the line (g = 0). Let A = Ox(1).
In particular, on X, there are:

e Three ‘lines’ of A-degree 1/2;
e Three fibrations by ‘conics’ of A-degree 1;
e One map to P2

(ii) Convince yourself that the orbifold cohomology of X has basis
1,A,n, A? in degrees 0,1,1,2; deg A% = 3/2 and degn? = 1/2.

(iii) Use the information in (i) to show that quantum multiplication
by A is given in this basis by the following matrix where codim g = 2:

O Q<A1Aapt>1 0 O
1 0 2g3(A,n,A)1 q{4, pt, A)y
M = ! _
0 2q(A,A,77)% 0 0
0 1 0 0
0 3¢ 0 0
|11 0 %q% 3q
0 3¢z 0 0
0 1 0 0



(iv) Verify directly that the cyclic vector 1po—cf. Q 8(4)—satisfies
the ‘expected’ hypergeometric operator

2D%(2D — 1) — 3¢(3D + 1)(3D + 2).

[Hint: First rewrite D1 = ¢¥M in the new basis

$o = o
¢1 = Do =91
3 1
b2 =13+ 5612%
b3 = 12
A small calculation shows that the equation in the new basis is:
0 3¢ 0 0
_g|1 0 % i
Do =2 0 1 0 0
0 0 3¢z 0

In this form it is easy to calculate the equation satisfied by ¢¢ = 10.]

(v) Show that the quantum products calculated in (iii), together
with associativity, determine the whole small quantum cohomology
ring. In particular, show that this determines the curious Gromov-

Witten number: 5

1 = ——.
2 4

(vi) The direct calculation of the number in (v) leads to a beautiful
case study in excess intersection theory: the expected dimension of the

(n,m,m)

12

Figure 3: %0,3,1/2(%3)

moduli space is 14+2 — 3 x 1 = 0; however, the picture shows an actual
moduli space of dimension 1 (the four points on the component on
which the morphism to X is constant). If you feel brave enough,
calculate (n,n,n)1 = —% by a study of the virtual class.

2
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3 Toric stacks practice

(13) Show that PicP,, ,, =Z ® Z [ nct(r ro)z directly from the defi-
nition.

(14) Consider the action of G = C*2 on C* by the weights

110 —n
0 01 1
(where n > 0 is a positive integer).
(i) Persuade yourself that the group of G-linearised line bundles is
LV =72
(ii) Show that there are two stability conditions for linearised line
bundles, carefully write down the unstable loci for each, and identify
the two geometric quotients as P(1,1,n) and F,.

(iii) Choose coordinate charts around the two cusps of the Kahler
moduli space and write down the GKZ operators in each chart.

(15) Consider the n-dimensional weighted projective space PV =

P(wy, ..., w,) with the obvious diagonal actions by C*"*! (ineffec-
tive) and by the quotient n-dimensional torus T" = CX"+1/C* (ef-
fective).

(i) Persuade yourself that a degree d “T-fixed” (whatever this
means!) morphism f: P! — P¥ can be written in the form:

T; = zgwl
dw;
Tj =2

=0 if k#i,j

(ii) Prove that, as a representation:

(o) = (B D gt g —w)) /¢

k a+b=dwy
a,b>0

€ Hp{pt}

(The lattice M of characters of T fits in an exact sequence:

0 M — znt ) )
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[Hint. Start with the T-equivariant Euler sequence on PW:
0— O — &rO(wiP — xx) — Tpw — 0.]

(iii) Use the general theory developed in class to generalise this
calculation to arbitrary stable representable morphism P, ,, — P%.

4 Quantum Cohomology systematics

(16) Using the recipe given in class, write down presentations for
the extended quantum equivariant orbifold cohomology of P(1,2) and
P(1,1,3). Study the classical and non-equivariant limits and persuade
yourself that everything fits together nicely.

(17) The purpose of this question is to demonstrate, by looking at
the simple case X = P(1, 1, 2), that knowledge of the small J-function is
sufficient (in fact, the first few coefficients of the asymptotic expansion
in 1/z are sufficient) to determine the small quantum cohomology.

(i) Following the recipe given in class, write the small J-function
of P(1,1,2) as:

P Qdedt
J(t;2) = ze (1"‘; (p+z)2...(]34_01,3)2(2P+z)---(2P+2dz)+

Qd+§ed+§
+1.
2%;) (P+%2)2-.-(P—I—(d+%)z)2(2p+z)--- (2P + (2d + 1)z)>

(ii) Show that the small J-function satisfies the differential equa-
tion: ,
d d
2 4—(2——1)— t—
“a\“at Q=10

(iii) Show that:

N[

4Q

¥4

& 197 0(%)

t2
. _ 2
J(t;z) =21+ P —2z+1% 5,3

N

(iv) Consider the small J-function as a column vector in the basis
1, P, P?,1;. Define the S-matriz as follows:
2
S = (J,ZEJ,Z wJ,2Q 2e 22 ﬁ.])
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Use the expansion above to shows that S(0) = identity.
(v) Prove that the S-matrix, as defined above, satisfies the differ-
ential system

)
[N
®
Nl

oS O O

ziSZ SM, where M =
dt

S O = O
(= ===
o O OoOwN

[,
@
Nl

Q

(vi) Convince yourself that M is the matrix of quantum multipli-
cation by P in the basis 1, P, P?, 1%.

[Hint. You must use the general theory; in particular, the proper-
ties of the big J-function.]

(18) Consider the 2-dimensional toric stacks X with fan and divisor
diagrams:

p:(l 0 —1 0>:Z2—>N:ZQ, and

01 -3 -2
(1 3 1 0\ .2 vV 2
D_(O 2 0 1>.Z — LY =7

(i) Find an explicit identification of the coarse moduli space X
with the ruled surface F3. Denote by A and B the natural divisors on
[F3—the fibre and the negative section. Show that X can be interpreted
as the moduli space of square roots of B—cf. Q 9(i), and make sure
that X contains a substack {z4 = 0} supported on B and isomorphic
to P(2,2). Identify the integral Chow ring CH®*(X, Z) with the subring
of CH*(X, Q) multiplicatively generated by A and B/2; the cycle class
of P(2,2) C X is B/2.

(ii) Show that NE X C Lg = R? is the cone of vectors

1>0 d
(ll) € R? such that L=4 an
l2 311 + 2l2 Z 0.

(iii) Show that AE X is the set of vectors

(ll> € NEX such that {;1 €Z and

lo 2 € %Z,
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and the reduction function is v ( (§1>) = (%)
2

(iv) Write down the small non-equivariant I-function of X in the
natural integral basis P, = D1, P» = Dy of PicX—and dual basis for
Ni(%,Z). Stare at it. Then show that:

_3 1
I"™(Q,5;2) = 21 + 81Py + 2P + Q1Q, 2™ 7591, + 0(—) (1)
2 z
This shows that condition § does not hold. More relevant, it is impos-
sible to calculate the small quantum orbifold cohomology of X without
using the extended I-function.

(v) For § = { (_01) }, write down the S-extended I-function. Cal-

culate the mirror map.

(vi) Calculate the first few terms of the asymptotic expansion in
1/z of the S-extended J-function J§ and hence write a presentation of
the small quantum cohomology of X. (Good luck. I can’t tell you what
you are supposed to get since I didn’t do this: in fact, I appreciate if
you show me your calculation.)
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