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M3P14 Elementary Number Theory
Sheet2: Solutions.

(1) We have to solve

z=2 mod3
=3 modbH
=1 mod4

By the Chinese remainder theorem the problem has a unique solution mod 3-
5.4 = 60. Let us first solve

y=2 mod3
y=3 mod?5

The solution is of the form y = 2 + 3u = 3 + 5v mod 15 where 3u — 5v = 1;
hence (u,v) = (2,1) will do; this gives y =8 mod 15. We now solve

=8 mod 15
=1 mod4

The solution is of the form x = 8 + 15u = 1 + 4v mod 60 where 4v — 15u = 7,
here (u,v) = (3,13) will do; this gives the (unique) solution

z =53 mod 60.

(3) We proceed by repeated squaring: first of all
9990 = 8192 4 1024 4+ 512 4+ 256 +4 4 2

So:

22 =4

24 =16

28 = 256

216 = 2562 = 5590 mod 9991

232 = 55902 = 6243 mod 9991

204 — 6243% = 158 mod 9991
2128 — 1582 = 4982 mod 9991
2256 — 4982% = 2680 mod 9991
2512 — 2680% = 8862 mod 9991
21024 — 88622 = 5784 mod 9991
22048 — 57842 = 4788 mod 9991
21096 — 47882 = 5590 mod 9991

28192 — 55902 = 6243 mod 9991.



Finally:

29990 — 6943 x 5784 x 8862 x 2680 x 16 x 4 =
2038 x 8862 x 2680 x 16 x 4 =
7019 x 2680 x 16 x 4 = 7858 x 64 = 3362.

From this it is clear that 9991 is not prime.

(4) Comment. I admit this is a very large calculation.

(a) We solve for x: z''3 = 347 mod 463; we need a pocket calculator to
do this. According to the general theory we can do this if hcf(347,463) =
hef(113, (463)) = 1; now 463 is prime so ¢(463) = 462; 113 is also prime and
it does not divide 462, hence indeed hcf(113,462) = 1. Next we need positive
integers y, z such that

113y — 462z =1

The Euclidean algorithm:
462 =4 x 113+ 10

113 =11 x10+3
10=3x3+1

gives

1=10-3x3=10-3x%x (113—-11x10) = -3 x 113+ 34 x 10 =
—3x 113+ 34 x (462 — 4 x 113) = 34 x 462 — 139 x 113.
This gives integers (y, z) = (=139, —34) with 113y — 462z = 1 but they are not

positive. The required positive solution is (y,z) = (=139 + 462, —34 + 113) =
(323,79); to summarise, we found that

113 x 323 — 462 x 79 = 1
(check!). The answer to the question is
= 347%%%  mod 463.
We calculate this with the method of repeated squaring;:
323 = 256 + 67 = 256 + 64 + 2 + 1
and
3472 = 120,409 =29 mod 463
347% = 292 = 841 = 378 mod 463
3478 = 378% = 142,884 = 280 mod 463
34716 = 2802 = 78,400 = 153 mod 463
34732 = 1532 = 23,409 = 259 mod 463
347% = 259% = 67,081 = 409 mod 463

347128 = 4092 = 167,281 = 138 mod 463
34720 = 1382 = 19,044 = 61 mod 463.



Finally
T =61 x 409 x 29 x 347 = 37 mod 463.

(b) Similar. I just sketch the answer. First we need to check that hef(b,m) =
hcf(275,588) = 1, which you can do e.g. running the Euclidean algorithm. Then
you calculate ¢(588) = 168 and

257y — 168z =1
for (y,2) = (11,18) so x = 139'* mod 588. We compile our usual table:

1392 =505 mod 588
139* =491 mod 588
1398 =253 mod 588

and x = 1391 = 253 x 505 x 139 = 559 mod 588.

(5) (a) This was proved in class but here is a slightly different proof. First
of all a solution exists: if
ky — p(m)z = 1

then a = bY is a k-th root of b. To see that there is only one solution we just
need to show that the equation

2" =1 modm

has as unique solution 2 = 1 (why?). But this is obvious: the order of x must
divide both k (from the equation) and ¢(m) (the order of the group (Z/mZ)*
where z lives) hence the order of x must be 1.

(b) (OK I admit this part of the question is rather tough.) Here we assume
hef(k, o(m)) > 1. Tt is enough to show that the equation

¥ =1 modm (1)

always has at least 2 solutions (why?). We may assume that £ = ¢ is prime
(why?). Let m = [[p;* be the prime decomposition of m, then

pm) =[]p" (i — 1)

Necessarily g|p;(p; —1) for some ¢ and then it is enough to show that Equation (1)
has at least two solutions mod p;* (why?). So all I have to do is to produce an
element v # 1 mod p;* that has order ¢ in (Z/p;*Z)*. It is easy to show that
v exists if a; = 1 (why?) so I will from now on assume that a; > 2. There are
two cases: (i) ¢ = p; and (ii) ¢|p; — 1; I treat them separately:

(i) Assume ¢ = p;. Note that we have surjective group homomorphism

[ (Z/pi2) — (Z/p:2)"

with kernel a group K of order p‘il"'_1 (Lagrange). Consider now 1+p; € K; this
1

element has order p? for some 1 < b < p; — 1 and I can take v = (1 +pi)qb7 .
(ii) Assume now that ¢|p; — 1. Let g be a primitive root modulo p and let
g € (Z/p"Z)* an element which maps to g under the homomorphism f. Now



g has order p%(p; — 1) for some b (why?) and then (g)P? necessarily has order
p; — 1. In this case I can take

bpi—1
) —

v =1(9)
(¢) Tt should not have been difficult for you to guess that the number of

solutions is hef(k,p — 1) (assuming that at least one solution exists).

(6) (a) This is taked directly from the notes!
Claim. If m is square-free, then

a*?mM*t = ¢ mod m

for all a. Indeed write m = p1ps - - - pg with p; distinct primes; then

a‘P(m) = a(pl_l)(pQ_l)”‘(pk_l) =1 mod Di lf Di Xa
=0 ifp; fa

and the claim follows from the Chinese remainder theorem.
Using the claim:

(B)* = bk = p*¢(+ = mod m.

If ab=1 mod m, then y — by is the inverse of x — ax.

Obvious: by part (a) S = {ax | x € S}.

¢) Taking products immedialy shows P = a?(™M) P and dividing both sides
by P (why is this possible?) we get a?(™ =1 mod m.

)

8) This is a very easy question
)
)

(10) The functions d, o are multiplicative; indeed

and convolution of multiplicative functions is multiplicative (you can quote this
without proof because it was stated in the lectures). If p is prime d(p*) = k+ 1
and

pk+1 -1

o) =14p+ptept =

(11)(a) These should have been easy:

1 1 1
Z Ogn:const—i—O( ogw)+/ Ogudu
n T 1

u
1<n<Lz

1
nlogn"’

and similarly for )



(b) First you should draw a picture of integer points under a hyperbola, as
we did in class, to persuade yourself that

d(n) 1 1
DI D DD DD DD Dl
n<zx n<z d|n n<zm<z/n
This was the hard part. If you see this, then the rest is easy:

1T -Eh0eo) )

n<z m<z/n

=~logz + O(1) + ZO(é) + Z %(logx —logn) =

n<x n<x

=vylogz + O(1) +logx<z %) - Z logn _

n

n<x n<lx

1
=3 log®  + 2vlogz 4 O(1).



