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M3P14 Elementary Number Theory
Sheet2: Solutions.

(1) We have to solve 
x ≡ 2 mod 3
x ≡ 3 mod 5
x ≡ 1 mod 4

By the Chinese remainder theorem the problem has a unique solution mod 3 ·
5 · 4 = 60. Let us first solve {

y ≡ 2 mod 3
y ≡ 3 mod 5

The solution is of the form y ≡ 2 + 3u = 3 + 5v mod 15 where 3u − 5v = 1;
hence (u, v) = (2, 1) will do; this gives y ≡ 8 mod 15. We now solve{

x ≡ 8 mod 15
x ≡ 1 mod 4

The solution is of the form x ≡ 8 + 15u = 1 + 4v mod 60 where 4v − 15u = 7;
here (u, v) = (3, 13) will do; this gives the (unique) solution

x ≡ 53 mod 60.

(3) We proceed by repeated squaring: first of all

9990 = 8192 + 1024 + 512 + 256 + 4 + 2

So:

22 = 4

24 = 16

28 = 256

216 = 2562 ≡ 5590 mod 9991

232 = 55902 ≡ 6243 mod 9991

264 = 62432 ≡ 158 mod 9991

2128 = 1582 ≡ 4982 mod 9991

2256 = 49822 ≡ 2680 mod 9991

2512 = 26802 ≡ 8862 mod 9991

21024 = 88622 ≡ 5784 mod 9991

22048 = 57842 ≡ 4788 mod 9991

24096 = 47882 ≡ 5590 mod 9991

28192 = 55902 ≡ 6243 mod 9991.



Finally:

29990 = 6243× 5784× 8862× 2680× 16× 4 ≡
2038× 8862× 2680× 16× 4 ≡

7019× 2680× 16× 4 ≡ 7858× 64 = 3362.

From this it is clear that 9991 is not prime.

(4) Comment. I admit this is a very large calculation.
(a) We solve for x: x113 ≡ 347 mod 463; we need a pocket calculator to

do this. According to the general theory we can do this if hcf(347, 463) =
hcf(113, ϕ(463)) = 1; now 463 is prime so ϕ(463) = 462; 113 is also prime and
it does not divide 462, hence indeed hcf(113, 462) = 1. Next we need positive
integers y, z such that

113y − 462z = 1

The Euclidean algorithm:

462 = 4× 113 + 10
113 = 11× 10 + 3

10 = 3× 3 + 1

gives

1 = 10− 3× 3 = 10− 3× (113− 11× 10) = −3× 113 + 34× 10 =
− 3× 113 + 34× (462− 4× 113) = 34× 462− 139× 113.

This gives integers (y, z) = (−139,−34) with 113y − 462z = 1 but they are not
positive. The required positive solution is (y, z) = (−139 + 462,−34 + 113) =
(323, 79); to summarise, we found that

113× 323− 462× 79 = 1

(check!). The answer to the question is

x ≡ 347323 mod 463.

We calculate this with the method of repeated squaring:

323 = 256 + 67 = 256 + 64 + 2 + 1

and

3472 = 120, 409 ≡ 29 mod 463

3474 ≡ 292 = 841 ≡ 378 mod 463

3478 ≡ 3782 = 142, 884 ≡ 280 mod 463

34716 ≡ 2802 = 78, 400 ≡ 153 mod 463

34732 ≡ 1532 = 23, 409 ≡ 259 mod 463

34764 ≡ 2592 = 67, 081 ≡ 409 mod 463

347128 ≡ 4092 = 167, 281 ≡ 138 mod 463

347256 ≡ 1382 = 19, 044 ≡ 61 mod 463.



Finally
x ≡ 61× 409× 29× 347 ≡ 37 mod 463.

(b) Similar. I just sketch the answer. First we need to check that hcf(b, m) =
hcf(275, 588) = 1, which you can do e.g. running the Euclidean algorithm. Then
you calculate ϕ(588) = 168 and

257y − 168z = 1

for (y, z) = (11, 18) so x ≡ 13911 mod 588. We compile our usual table:

1392 ≡ 505 mod 588

1394 ≡ 421 mod 588

1398 ≡ 253 mod 588

and x ≡ 13911 ≡ 253× 505× 139 ≡ 559 mod 588.

(5) (a) This was proved in class but here is a slightly different proof. First
of all a solution exists: if

ky − ϕ(m)z = 1

then a = by is a k-th root of b. To see that there is only one solution we just
need to show that the equation

xk ≡ 1 mod m

has as unique solution x = 1 (why?). But this is obvious: the order of x must
divide both k (from the equation) and ϕ(m) (the order of the group (Z/mZ)×

where x lives) hence the order of x must be 1.
(b) (OK I admit this part of the question is rather tough.) Here we assume

hcf
(
k, ϕ(m)

)
> 1. It is enough to show that the equation

xk ≡ 1 mod m (1)

always has at least 2 solutions (why?). We may assume that k = q is prime
(why?). Let m =

∏
pai

i be the prime decomposition of m, then

ϕ(m) =
∏

pai−1
i (pi − 1)

Necessarily q|pi(pi−1) for some i and then it is enough to show that Equation (1)
has at least two solutions mod pai

i (why?). So all I have to do is to produce an
element γ 6≡ 1 mod pai

i that has order q in (Z/pai
i Z)×. It is easy to show that

γ exists if ai = 1 (why?) so I will from now on assume that ai ≥ 2. There are
two cases: (i) q = pi and (ii) q|pi − 1; I treat them separately:

(i) Assume q = pi. Note that we have surjective group homomorphism

f : (Z/pai
i Z)× → (Z/piZ)×

with kernel a group K of order pai−1
i (Lagrange). Consider now 1+pi ∈ K; this

element has order pb
i for some 1 ≤ b ≤ pi − 1 and I can take γ = (1 + pi)qb−1

.
(ii) Assume now that q|pi − 1. Let g be a primitive root modulo p and let

g̃ ∈ (Z/pai
i Z)× an element which maps to g under the homomorphism f . Now



g̃ has order pb
i (pi − 1) for some b (why?) and then (g̃)pb

i necessarily has order
pi − 1. In this case I can take

γ = (g̃)pb
i

pi−1
q .

(c) It should not have been difficult for you to guess that the number of
solutions is hcf(k, p− 1) (assuming that at least one solution exists).

(6) (a) This is taked directly from the notes!
Claim. If m is square-free, then

azϕ(m)+1 ≡ a mod m

for all a. Indeed write m = p1p2 · · · pk with pi distinct primes; then{
aϕ(m) = a(p1−1)(p2−1)···(pk−1) ≡ 1 mod pi if pi 6 |a

≡ 0 if pi 6 |a

and the claim follows from the Chinese remainder theorem.
Using the claim:

(by)k = bky = bzϕ(m)+1 ≡ b mod m.

(b) Here (k, ϕ(m)) = (5, 6) = 1, (y, z) = (5, 4) and by = 65 ≡ 0 mod 9.

(8) This is a very easy question
(a) If ab ≡ 1 mod m, then y 7→ by is the inverse of x 7→ ax.
(b) Obvious: by part (a) S = {ax | x ∈ S}.
(c) Taking products immedialy shows P = aϕ(m)P and dividing both sides

by P (why is this possible?) we get aϕ(m) ≡ 1 mod m.

(10) The functions d, σ are multiplicative; indeed

d(n) =
∑
d|n

1 = 1 ∗ 1

σ(n) =
∑
d|n

d = I ∗ 1

and convolution of multiplicative functions is multiplicative (you can quote this
without proof because it was stated in the lectures). If p is prime d(pk) = k + 1
and

σ(pk) = 1 + p + p2 + · · · pk =
pk+1 − 1

p− 1
.

(11)(a) These should have been easy:∑
1≤n≤x

log n

n
= const + O

( log x

x

)
+

∫ x

1

log u

u
du

and similarly for
∑

1
n log n .



(b) First you should draw a picture of integer points under a hyperbola, as
we did in class, to persuade yourself that∑

n≤x

d(n)
n

=
∑
n≤x

∑
d|n

1
n

=
∑
n≤x

∑
m≤x/n

1
mn

.

This was the hard part. If you see this, then the rest is easy:

∑
n≤x

1
n

∑
m≤x/n

1
m

=
∑
n≤x

1
n

(
γ + O

(n

x

)
+ log

x

n

)
=

= γ log x + O(1) +
∑
n≤x

O
( 1

x

)
+

∑
n≤x

1
n

(log x− log n) =

= γ log x + O(1) + log x
(∑

n≤x

1
n

)
−

∑
n≤x

log n

n
=

=
1
2

log2 x + 2γ log x + O(1).


