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M3P14 Elementary Number Theory
Sheet 3: Solutions.

(1) We use the formula

σ(n) =
∏ pri+1

i − 1
pi − 1

hence

σ(10) = (1 + 2)(1 + 5) = 18
σ(20) = (1 + 2 + 4)(1 + 5) = 42

σ(1728) = σ(2633) = (127)(40) = 5080

(3) Assume to the contrary that 5, p2, ...pr are all the primes ≡ −1 mod 6;
consider

N = 6p2 · · · pr + 5 ≡ −1 mod 6,

then none of the pi can divide N ; indeed 5 does not divice N and if i ≥ 2 then
hcf(pi, N)|5 hence hcf(pi, N) = 1. Look now at the prime factorization of N :

N = q1q2 · · · qs ≡ −1 mod 6

(possibly with repetitions); a prime other than 3 can only be ≡ ±1 mod 6
(why?) and clearly 3 does not divide N (why?) hence qi ≡ ±1 mod 6; but
then at least one of the qi ≡ −1 mod 6, a contradiction.

(5) We know that (Z/11Z)× ∼= Z/10Z so we know that there are ϕ(1) = 1
element of order 1, ϕ(2) = 1 element of order 2, ϕ(5) = 4 elements of order 5
and ϕ(10) = 4 elements of order 10. Finally 2 is a primitive root mod 11 and

the elements of order 10 are 2, 23 ≡ 8, 27 ≡ 7, 29 ≡ 6;

the elements of order 5 are 22 ≡ 4, 24 ≡ 5 26 ≡ 9 28 ≡ 3;

the element of order 2 is 25 ≡ 10.

(6) The first step is to make sense of the question: which is meant, multi-
plicative or additive order? It should be clear that multiplicative order is meant:
Let a ∈ Z have order k in (Z/mZ)×, etc. Next you should persuade yourself
that the problem is equivalent to the following:

Problem. Prove that the additive order of h ∈ Z/kZ is k if and only if
hcf(h, k) = 1.

In turn, this is equivalent to saying that the following two statements are
equivalent:
(a) For all m, k divides hm implies k divides m.
(b) hcf(h, k) = 1.

(It is easy to show that (a) and (b) are equivalent: do it!)



(8) Let p be prime; then (Z/pZ)× is a disjoint union of subsets {g, g−1}; these
are two-elements subsets except when {g, g−1} = {−1} and when {g, g−1} =
{1}. Taking the product of all elements of (Z/pZ)× we get

p−1∏
a=1

a ≡ 1× (−1)×
∏

gg−1 ≡ −1 mod p

On the other hand, if n is composite, then n = km for some 1 < k, m < n,
therefore k|(n − 1)! (for example) so hcf(n, (n − 1)!) > 1, that is, (n − 1)! 6∈
(Z/nZ)×.

(9) Here is a table of indices mod 17 in the base 3; recall that the index
function I takes an invertible integer mod p to an integer mod p− 1:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I(a) 0 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

We solve
4x ≡ 11 mod 17,

that is
I(4) + I(x) ≡ I(11) mod 16.

We conclude

I(x) ≡ I(11)− I(4) ≡ 7− 12 ≡ 11 mod 16, that is, x ≡ 7 mod 17.

Next we solve

5x6 ≡ 7 mod 17, that is, I(5) + 6I(x) ≡ I(7) mod 16,

and 6I(x) ≡ 6 mod 16.

This gives I(x) ≡ 1, 9 mod 16 and x ≡ 3, 14 mod 17.

(10) (a) If p − 1 = km, then in Fp[X] (the “ring” of polynomials in the
variable X with coefficients in the finite field Fp = Z/pZ) we can factor

xp−1 − 1 = (xk − 1)(1 + xk + x2k + · · ·+ xk(m−1));

we know that this polynomial has p − 1 = km distinct roots in Fp; it follows
that the two polynomials on the right hand side each have the maximum allowed
number of roots, k and k(m− 1) respectively.

(b) The equation is equivalent to the equation

kI(x) ≡ I(a) mod p− 1

therefore, from what we know, a solution exists if and only if hcf(k, p−1) divides
I(a) and, assuming that is the case, there are then hcf(k, p− 1) solutions.

(c) Taking indices modulo 3 this is equivalent to

111I(x) ≡ 6 mod 1986.

Now hcf(111, 1986) = 3 divides 6, therefore there are 3 solutions.



(12) This follows a well-known procedure and it should not have been difficult
for you to answer this question.

Assume for starts that p ≡ 1 mod 8; this is the same as saying p = 8m + 1
for some positive integer m, and N = 4m, and then we have the following table:

−2j −2 −4 . . . −2(2m) −2(2m + 1) . . . −2(4m− 1) −2(4m)
(−2)j −2 −4 . . . −4m 4m− 1 . . . 3 1

From this we can deduce: If p = 8m + 1, then νp(−2) = 2m (we have just
worked out from the definition a formula for νp(−2)) and (from the Gauss

lemma)
(
−2
p

)
= 1. The other cases (p ≡ 3 mod 8, p ≡ 5 mod 8, p ≡ 7

mod 8) are similar and the details are left to you.


