AC, December 2008

M3P14 Elementary Number Theory
Sheet 3: Solutions.

(1) We use the formula
piitt -1

o ="

hence

o(10) = (1 +2)(1 +5) =18
0(20) = (1+2+4)(1+5) =42
o(1728) = 0(2°3%) = (127)(40) = 5080

(3) Assume to the contrary that 5, ps,...p, are all the primes = —1 mod 6;
consider
N =606p2---pr+5=—-1 mod 6,

then none of the p; can divide N; indeed 5 does not divice N and if ¢ > 2 then
hef(p;, N)|5 hence hef(p;, N) = 1. Look now at the prime factorization of N:

N=qq---qgs=—1 mod 6

(possibly with repetitions); a prime other than 3 can only be = +1 mod 6
(why?) and clearly 3 does not divide N (why?) hence ¢; = £1 mod 6; but
then at least one of the ¢; = —1 mod 6, a contradiction.

(5) We know that (Z/11Z)* = Z/10Z so we know that there are ¢(1) = 1
element of order 1, ¢(2) = 1 element of order 2, ¢(5) = 4 elements of order 5
and ¢(10) = 4 elements of order 10. Finally 2 is a primitive root mod 11 and

the elements of order 10 are 2, 2> =8, 27 =7, 2° = 6;
the elements of order 5 are 22 =4, 2t =520 =9 2% = 3;

the element of order 2 is 2° = 10.

(6) The first step is to make sense of the question: which is meant, multi-
plicative or additive order? It should be clear that multiplicative order is meant:
Let a € Z have order k in (Z/mZ)*, etc. Next you should persuade yourself
that the problem is equivalent to the following:

Problem. Prove that the additive order of h € Z/kZ is k if and only if
hef(h, k) = 1.

In turn, this is equivalent to saying that the following two statements are
equivalent:

(a) For all m, k divides hm implies k divides m.
(b) hef(h, k) = 1.
(Tt is easy to show that (a) and (b) are equivalent: do it!)



(8) Let p be prime; then (Z/pZ)* is a disjoint union of subsets {g, g~'}; these
are two-elements subsets except when {g,g7'} = {—1} and when {g,g7'} =
{1}. Taking the product of all elements of (Z/pZ)* we get

p—1
Hazl x (—1) ngg’lz—l mod p
a=1

On the other hand, if n is composite, then n = km for some 1 < k,m < n,
therefore k|(n — 1)! (for example) so hef(n, (n — 1)!) > 1, that is, (n — 1)! &
(Z/nZ)*.

(9) Here is a table of indices mod 17 in the base 3; recall that the index
function I takes an invertible integer mod p to an integer mod p — 1:

a 1] 234567 [8[9]10][11[12][13[14[15]16
T ||[0[1a[1[12]5 |15 1110 (2] 3 |7 |[13[4[9[6 |38

We solve
4r =11 mod 17,

that is
I(4) + I(z) = 1(11) mod 16.

We conclude
I(z)=1(11)—1(4)=7—-12=11 mod 16, thatis, z=7 mod 17.
Next we solve

525 =7 mod 17, thatis, I(5)+6I(z)=I(7) mod 16,
and 6I(z) =6 mod 16.

This gives I'(x) = 1,9 mod 16 and x = 3,14 mod 17.

(10) (a) If p — 1 = km, then in F,[X] (the “ring” of polynomials in the
variable X with coefficients in the finite field F,, = Z/pZ) we can factor

£L’p7171:(xk71)(1+5Ek+(£2k+‘~~+xk(m71));

we know that this polynomial has p — 1 = km distinct roots in IF; it follows
that the two polynomials on the right hand side each have the maximum allowed
number of roots, k and k(m — 1) respectively.

(b) The equation is equivalent to the equation

kI(x)=1(a) modp—1

therefore, from what we know, a solution exists if and only if hef(k, p—1) divides
I(a) and, assuming that is the case, there are then hcf(k, p — 1) solutions.
(c) Taking indices modulo 3 this is equivalent to

111I(z) =6 mod 1986.

Now hef(111,1986) = 3 divides 6, therefore there are 3 solutions.



(12) This follows a well-known procedure and it should not have been difficult
for you to answer this question.

Assume for starts that p =1 mod 8; this is the same as saying p = 8m + 1
for some positive integer m, and N = 4m, and then we have the following table:

—2j 2] —-a[.. . [=20@m) ] —2@m~+1)]... | —20@m—1) [ —2(4m)
—2); =2 [ =4 ... | —4m dm—1 | ... 3 1

From this we can deduce: If p = 8m + 1, then v,(—2) = 2m (we have just
worked out from the definition a formula for v,(—2)) and (from the Gauss

lemma) (%) = 1. The other cases (p = 3 mod8, p =5 mod8, p =7
mod 8) are similar and the details are left to you.



