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M3P14 Elementary Number Theory
Sheet 4: Solutions.

(1) From the way we did things in class, it is natural to take these assertions
in the order (i), (iii), (iv), (ii); I am sorry if this has caused you some difficulty.
(i) We want to show that

n2 − 1
8

is

{
even if n ≡ 1, 7 mod 8
odd if n ≡ 3, 5 mod 8

There are four small calculations to do. For example, if n = 8k + 1, then

n2 = 64k2 + 16k + 1

and n2−1
8 = 2k(4k + 1) is even. Similarly, if n = 8k + 3, then

n2 = 64k2 + 48k + 9

and n2−1
8 = 2k(4k + 3) + 1 is odd. The cases n = 8k + 5 and n = 8k + 7 are

similar.
(iii) Let us write a = 2k + 1 and b = 2h + 1. Then

a2b2 − a2 − b2 − 1 = (a2 − 1)(b2 − 1) = 16kh(k − 1)(h− 1)

is divisible by 16, therefore

a2b2 − a2 − b2 − 1
8

=
a2b2 − 1

8
− a2 − 1

8
− b2 − 1

8
≡ 0 mod 2.

(iv) Follows almost immediately from (iii).
(ii) We know that if p is an odd prime then(2

p

)
=

{
1 if p ≡ 1, 7 mod 8
−1 if p ≡ 3, 5 mod 8

By what we did in part (i) then( 2
n

)
= (−1)

n2−1
8 (1)

if n is prime. The result follows for all n by factorizing n into primes, because
boths sides of Equation 1 are multiplicative in n.

(2) Here we go:( 5
13

)
=

(13
5

)
=

(3
5

)
=

(2
3

)
= −1;(13

13

)
= 0;(456

123

)
=

(−36
123

)
=

(−1
123

)( 6
123

)2

=
(−1

123

)
02 = 0;( 11

10001

)
=

(10001
11

)
=

( 2
11

)
= −1.



(4)(i) Since Z/pZ is a field, the quadratic formula holds

x =
−b±

√
∆

2a

So one solution if ∆ ≡ 0 mod p, two solutions if p does not divide ∆ and ∆
is a quadratic residue, and no solutions if if p does not divide ∆ and ∆ is a
quadratic nonresidue.

(ii) I should have stated that 31957 is a prime number although it is not too
much of a chore to show that it is prime; the square root is about 178 and you
only have to test divisibility by primes up to 178; there are 40 primes smaller
than 178, so with a pocket calculator you “only” have to perform 40 divisions.

In any case, by the first part, the equation has a solution if and only if the
discriminant

∆ = 9 + 4 = 13

is a square mod 31957. We calculate the Jacobi symbol(31957
13

)
=

( 3
13

)
=

(13
3

)
=

(1
3

)
= 1 :

the equation does have a solution.

(5) As we know, Z/pZ× is a cyclic group of order p− 1. Property (F ) says:
an element g ∈ Z/pZ× is a generator if and only if g is not a square. Wiewing
the group additively: Z/pZ× ∼= Z/(p − 1)Z, this translates into: an element of
the additive group Z/(p− 1)Z is a generator if and only if it is odd. In general,
for all positive integers m, an element a ∈ Z/mZ is an (additive) generator if
and only if hcf(a,m) = 1. We can finally re-phrase property (F ) as follows:

Property (F ) for a prime p: hcf(a, p− 1) = 1 if and only if a is odd.

From here, it is easy to see that a prime p satisfies property (F ) if and only
if it is of the form 22n

.

(6) (i) This always happense if hcf(a, n) = 1 and a is a square mod n. Indeed
then a is a square mod p for every prime p that divides n, so

(
a
p

)
= 1 for every

prime that divides n, and then
(

a
n

)
= 1 by definition of the Jacobi symbol.

(ii) This can happen if hcf(a, n) 6= 1; for example if n = p is prime, and p|a,
then by definition

(
a
p

)
= 0 but a ≡ 0 mod p is certainly a square mod p.

(iii) This can happen and we saw an example in class; take n = 15 and a = −1;
then

(
−1
15

)
= 1 but −1 is not a square mod 15.

(iv) This can also happen; for example every time that n = p is prime and p 6 |a.

(8) This is fun: first, we look at

y2 = x3 + 23

modulo 4; y2 ≡ 0 or 1 mod 4; correspondingly, x3 ≡ 1 or 2 mod 4; but only the
first case is possible with x ≡ 1 mod 4 and y even.

Now we have

y2 + 4 = x3 + 27 = (x + 3)(x2 − 3x + 9)



and the factor x2 − 3x + 9 ≡ 3 mod 4, so it is the product of odd primes and
at least one of them, say p ≡ 3 mod 4. From

y2 + 4 ≡ 0 mod p

we get
(−1

p

)
= 1, a contradiction.

(10) This problem tests your understanding of the method of Fermat descent.
Whether you guessed correctly or not, the answer is: If p is an odd prime, then
the equation

x2 + 2y2 = p

is soluble for integers x, y if and only if p ≡ 1 or 3 mod 8.
Indeed, if a solution exists then −2 is a residue mod p, that is(−2

p

)
= 1

and the condition follows from our knowledge of the Legendre symbol.
Viceversa, let us assume that

(−2
p

)
= 1. First, we can find integers A,B and

0 < M < p such that
A2 + 2B2 = Mp

Indeed, by choosing −p/2 < A,B < p/2 (and coprime with p) such that A2 +
2B2 ≡ 0 mod p, we also ensure that

A2 + 2B2 = Mp <
1
4
p2 + 2× 1

4
p2 =

3
4
p2, hence M < p.

Now if M = 1 we are done, so let us assume that M > 1. We try to set up a
machine to make M smaller.

Everything is based on the key identity :

(A2 + 2B2)(u2 + 2v2) = (Au + 2Bv)2 + 2(Bu−Av)2

(Verify the identity, play with it, make sure you understand it.)
Choose u, v with{

u ≡ A mod M

v ≡ B mod M
and − M

2
≤ u, v <

M

2
.

we get that u2 + 2v2 ≡ A2 + 2B2 ≡ 0 mod M , hence we can write

u2 + 2v2 = rM

for some integer 0 < r, and note that, since:

u2 + 2v2 ≤ 1
4
M2 + 2× 1

4
M2 < M2,

we also get that r < M . But now by the key identity:

(A2 + 2B2)(u2 + 2v2) = (Au + 2Bv)2 + 2(Bu−Av)2 = rM2p



and Au+2Bv ≡ u2+2v2 ≡ 0 mod M , and Bu−2Av ≡ BA−AB ≡ 0 mod M ,
so, dividing through by M :(Au + 2Bv

M

)2

+
(Bu−Av

M

)2

= rp

and, as I said before, 0 < r < M . We are done be descending induction (or
‘descent’, à la Fermat).

As a final note: You could have done all of this by studying the imaginary
quadratic field K = Q(

√
−2), with ring of integers O = Z[i

√
2]: show that O is

a Euclidean domain (with the logical norm), study the primes in O, etcetera.

(12)(i) This could be interpreted as a routine exercise on the Euclidean
algorithm in Z[i]. It is more fun to do it thus:

(a) Let us first compute norms: 8 + 38i = 2(4 + 19i) and N(4 + 19i) =
16 + 361 = 377 = 13 × 29. Now 13 = 9 + 4 = (3 + 2i)(3 − 2i) is the prime
decomposition in Z[i] and it follows that either 3 + 2i|4 + 19i or 3− 2i|4 + 19i.
A small experiment shows that the latter holds:

8 + 38i = 2(4 + 19i) = −i(1 + i)2(3− 2i)(−2 + 5i)

and this must be the prime decomposition of 8 + 38i in Z[i] (why?)—note that
these are not normalised primes, but who cares.

Similarly, N(9+59i) = 81+3841 = 3562 = 2×13×137. A small experiment
shows that

9 + 59i = (3− 2i)(−7 + 15i)

(is this the prime decomposition of 9+59i in Z[i]?). From this we can conclude
that

hcf(8 + 38i, 9 + 59i) = (1 + i)(3− 2i)

(supply your own argument based on this or finish computing the prime factori-
sation of 9 + 59i in Z[i] and conclude from there...).

(b) From part (a) we know all about −19 + 4i:

−19 + 4i = i(4 + 19i) = i(3− 2i)(−2 + 5i)

–the prime decomposition in Z[i]. Now N(−9 + 19i) = 81 + 361 = 442 =
2× 13× 17; we check if −9 + 19i is divisible by 3− 2i:

−9 + 19i

3− 2i
=

(−9 + 19i)(3 + 2i)
13

=
−65 + 39i

13
= −5 + 3i.

It is, so we conclude hcf(−19 + 4i,−9 + 19i) = 3− 2i.
(ii) The answer is—remember: we want normalised primes:

23− 11i = −(1 + i)(2 + i)2(2 + 3i)

The first thing you should have done is to calculate the norm:

232 + 112 = 650 = 2× 25× 13

From this it is clear that (1 + i), for example, divides α = 23− 11i (why?); also
either (2 + i)2 or (2 − i)2 divides α, but not both (why?); and 3 + 2i or 3− 2i
divides α (but not both). You can then find what exactly is going on by trial



and error. Finally you have to be a bit careful: for instance, 3 − 2i divides α
but it is not normalized: you have to use i(3− 2i) = 2 + 3i instead!

(14) 2925 = 32 × 52 × 13; the divisors d ≡ 1 mod 4 are

1, 5, 9, 13, 25, 45, 65, 117, 225, 325, 585, 2925

and those ≡ 3 mod 4 are

3, 15, 39, 75, 195, 975.

Hence D1 = 12, D3 = 6 and there are 24 integer pairs of solutions of the
equation

x2 + y2 = 2925

Explicitly to enumerate the solutions, it is best to go back to the proof. The
prime factorisation of n = 2925 in Z[i] is:

2925 = (2 + i)2(2− i)2(3 + 2i)(3− 2i)× 32

Solutions of x2 + y2 = 2925 are given by

x + iy = u(2 + i)2(3 + 2i) = u(1 + 18i);

= u(2 + i)2(3− 2i) = u(17 + 6i);
= u(2 + i)(2− i)(3 + 2i) = u(15 + 10i);
= u(2 + i)(2− i)(3− 2i) = u(15− 10i);

= u(2− i)2(3 + 2i) = u(17− 6i);

= u(2− i)2(3− 2i) = u(1− 18i).

where u can be any unit: ±1 or ±i (for a total of 6 × 4 = 24 solutions). The
24 solutions are: (±1,±18), (±18,±1) (8 solutions); (±6,±17), (±17,±6) (8
solutions); and (±10,±15), (±15,±10) (8 solutions).


