Biomedical Engineering Year 1

1. (a)
$$y'' + 3y' - 4y = 7e^{3x}$$

General Solution(GS) = Complementary Function(CF) + Particular Integral(PI).

To find CF: put $y(x) = e^{\lambda x}$ in the homogeneous form of the ODE, so $(\lambda^2 + 3\lambda - 4)e^{\lambda x} = 0$. Then the auxiliary equation is $\lambda^2 + 3\lambda - 4 = 0$ i.e. $(\lambda - 1)(\lambda + 4) = 0$. Hence $\lambda = 1$ or $\lambda = -4$, so CF = $Ae^x + Be^{-4x}$, where A and B are arbitrary constants.

To find the PI: put $y(x) = C e^{3x}$ in the full form of the ODE, where C is a constant to be found. [e^{3x} does not appear in the CF, so one expects this substitution to work.]

Then the ODE becomes $C(9+9-4)e^{3x} = 7e^{3x}$, so C = 7/14 = 1/2.

Hence the General Solution = $CF + PI = Ae^x + Be^{-4x} + \frac{1}{2}e^{3x}$.

(b) $y(x) = e^{\lambda x}$ in homogeneous form of ODE gives $\lambda = 1$ or $\lambda = 2$, so $CF = Ae^x + Be^{2x}$. To find PI: e^{2x} appears in the CF, so Ce^{2x} will not work - check this if necessary. So try $y(x) = Cx e^{2x}$ in the full form of the ODE.

Then $y' = C(1+2x)e^{2x}$ and $y'' = C(2+2+4x)e^{2x} = 4C(1+x)e^{2x}$, so substituting in full form of the ODE, $4C(1+x)e^{2x} - 3C(1+2x)e^{2x} + 2Cxe^{2x} = e^{2x}$, giving C = 1. Hence General Solution = CF + PI = $Ae^x + Be^{2x} + xe^{2x}$.

(c) CF: auxiliary equation is $\lambda^2 - 4\lambda + 4 = 0$, so $\lambda = 2$, repeated. So CF = $(A + Bx)e^{2x}$. PI: Since e^{2x} and xe^{2x} also appear in the CF, try $y = C x^2 e^{2x}$ in full ODE.

(d) CF: auxiliary equation is $2\lambda^2 - 3\lambda + 1 = 0$, so $\lambda = 1$ or $\frac{1}{2}$. So CF = $Ae^x + Be^{x/2}$. PI: Since RHS is quadratic in x, try general quadratic $y = C + Dx + Ex^2$. Substituting in full ODE gives $2E2 - 3(D + 2Ex) + C + Dx + Ex^2 = x^2$. Since this identity must hold for all values of x, coefficients of x^0 , x and x^2 on both sides must be equal. Hence 4E - 3D + C = 0, -6E + D = 0 and E = 1, so D = 6, C = 14. Thus the general solution is $y = Ae^x + Be^{x/2} + 14 + 6x + x^2$.

(e) CF: $\lambda^2 - 2\lambda + 2 = 0$, so $\lambda = 1 \pm i$. So CF = $ae^{(1+i)x} + be^{(1-i)x} = Ae^x \cos x + Be^x \sin x$, where A, B are real constants (a, b are complex conjugate constants).

PI: Since $e^x \sin x$ appears in RHS of ODE, try $y = (C \cos x + D \sin x) x e^x$.

(f) CF:
$$\lambda^2 + \lambda + 1 = 0$$
, so $\lambda = \frac{-1 \pm i\sqrt{3}}{2}$. So CF $= e^{-x/2} \left\{ A \cos\left(\frac{x\sqrt{3}}{2}\right) + B \sin\left(\frac{x\sqrt{3}}{2}\right) \right\}$.
PI: Try $y = (C + Dx) e^{2x}$.

(g) CF: $\lambda^2 - 2\lambda + 1 = 0$, so $\lambda = 1$, repeated. So CF = $(A + Bx)e^x$.

PI: Since RHS is cubic in x, try general cubic $y = C + Dx + Ex^2 + Fx^3$.

(h) CF: $\lambda^2 + 9 = 0$, so $\lambda = \pm 3i$. So CF = $A \cos 3x + B \sin 3x$.

PI: Replace $\cos^2 x$ by an expression linear in terms of trig functions, i.e. put $\cos^2 x = (1 + \cos 2x)/2$. Then RHS of full ODE contains two terms - find their corresponding PIs separately and add. PI for 1/2: try y = C, giving $C = \frac{1}{18}$. PI for $\frac{1}{2}\cos 2x$: try $y = D\cos 2x$. Then $D(-4+9) = \frac{1}{2}$, so $D = \frac{1}{10}$.

Hence general solution is $y = A \cos 3x + B \sin 3x + \frac{1}{18} + \frac{1}{10} \cos 2x$.

2. CF: $\lambda^2 + 6\lambda + 8 = 0$, so $\lambda = -2$, -4. So CF = $Ae^{-2x} + Be^{-4x}$. PI: **IF** one tries $y = C \cosh 2x + D \sinh 2x$. Then

4C cosh 2x + 4D sinh 2x + 12C sinh x + 12D cosh x + 8C cosh 2x + 8D sinh $2x = 12 \cosh 2x$. Equating coefficients of cosh x and of sinh x, 4C + 12D + 8C = 12 and 4D + 12C + 8D = 0. But the last two equations are not consistent. This method failed since the term e^{-2x} appears both in the CF and in RHS of the ODE, i.e. $6e^{2x} + 6e^{-2x}$. So try PI of form $Ee^{2x} + (F + Gx)e^{-2x}$. Then $4Ee^{2x} + 4Fe^{-2x} + 4G(-1 + x)e^{-2x} + 12Ee^{2x} - 12Fe^{-2x} + 6G(1 - 2x)e^{-2x} + 8Ee^{2x} + 8(F + Gx)e^{-2x} = 6e^{2x} + 6e^{-2x}$. Equate coefficients of e^{2x} and e^{-2x} , noting coefficient of xe^{2x} in LHS is 0. 4E + 12E + 8E = 6 and 4F - 4G - 12F + 6G + 8F = 6, so E = 1/4, G = 3 and F is undetermined. So take F = 0, noting a term in e^{-2x} already appears in CF. Hence general solution is $y = Ae^{-2x} + Be^{-4x} + \frac{1}{4}e^{2x} + 3xe^{-2x}$. To satisfy y(0) = 0 and y'(0) = 1, requires $A + B + \frac{1}{4} = 0$ and $-2A - 4B + \frac{1}{2} + 3 = 1$. So $A = -\frac{7}{4}$, $B = \frac{3}{2}$ and solution is $y = -\frac{7}{4}e^{-2x} + \frac{3}{2}e^{-4x} + \frac{1}{4}e^{2x} + 3xe^{-2x}$. 3. $x = e^t$. So $\frac{dx}{dt} = e^t = x$ and $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dt} = \frac{1}{x} \frac{dy}{dt}$. Hence $x\frac{dy}{dx} = \frac{dy}{dt} = \frac{d^2y}{dt^2} = \frac{d^2y}{dt^2} - \frac{dy}{dt}$.

Hence the ODE becomes $a\left(\frac{d^2y}{dt^2} - \frac{dy}{dt}\right) + b\frac{dy}{dt} + cy = 0$, i.e. $a\frac{d^2y}{dt^2} + (b-a)\frac{dy}{dt} + cy = 0$. For a = b = c = 1, $\frac{d^2y}{dt^2} + y = 0$, with general solution $y(t) = A\cos t + B\sin t$, i.e. $y(x) = A\cos(\ln x) + B\sin(\ln x)$.

- 4. Between launch and first coming to rest, the equation of motion is $mx'' = -m\omega^2 x mk$. When t = 0, x = 0 and x' = V. ODE is $x'' + \omega^2 x = -k$. So CF is $A \cos \omega t + B \sin \omega t$. RHS is constant, so try y = C for PI, giving $\omega^2 C = -k$. Hence PI $= -k\omega^{-2}$. Thus general solution is $x(t) = A \cos \omega t + B \sin \omega t - k\omega^{-2}$. Applying the conditions x = 0 and x' = V when t = 0 gives $0 = A - k\omega^{-2}$ and $V = B\omega$, so that $A = k\omega^{-2}$ and $B = V\omega^{-1}$ and $x(t) = k\omega^{-2}(\cos \omega t - 1) + V\omega^{-1}\sin \omega t$. (Optional Part - Harder) The particle first comes to rest at time T when x'(T) = 0 i.e. $-k\omega^{-1}\sin\omega T + V\cos\omega T = 0$, i.e. $\tan\omega T = V\omega/k$, as required. Then $\cos\omega T = k \left(k^2 + V^2\omega^2\right)^{-1/2}$ and $\sin\omega T = V\omega \left(k^2 + V^2\omega^2\right)^{-1/2}$, so that $x(T) = (k^2\omega^{-2} + V^2) (k^2 + V^2\omega^2)^{-1/2} - k\omega^{-2} = \omega^{-2} \left\{ (k^2 + V^2\omega^2)^{1/2} - k \right\}$. For t > T, $x'' + \omega^2 x = k$, so the general solution then becomes $x(t) = D\cos\omega(t - T) + E\sin\omega(t - T)t + k\omega^{-2}$. But for t = T, $x(T) = D + k\omega^{-2}$ so that $D = \omega^{-2} \left\{ (k^2 + V^2\omega^2)^{1/2} - 2k \right\}$. Also $x'(T) = 0 = E\omega$ so that E = 0. Hence $x'(t) = -D\sin\omega(t - T)$. So motion for
 - t > T can occur only if D > 0 i.e. $(V^2 \omega^2 + k^2)^{1/2} 2k > 0$ i.e. $V^2 \omega^2 > 3k$.
- 5. Taking the positive x axis to be vertically downwards, the equation of motion is Mass × Acceleration = Resultant Force vertically downwards, so that $mx'' = mg - mkv^2$, where v = x' (' means $\frac{d}{dt}$) and the resistance to motion is mkv^2 . Hence $v' = g - kv^2$. But, using a Chain Rule, $v' = \frac{dv}{dt} = \frac{dv}{dx}\frac{dx}{dt} = \frac{dv}{dx}v = \frac{1}{2}\frac{d}{dx}v^2$, so that $\frac{1}{2}\frac{d}{dx}v^2 = g - kv^2$. Hence, by putting $y = v^2$, this gives $\frac{dy}{dx} = 2(g - ky)$. Also at t = 0, we have x = 0and v = 0, so that y(0) = 0. The ODE for y(x) is both separable and linear. Using separation gives $-2k(x+c) = \ln |g - ky|$. But x = 0 and y = 0 when t = 0, so that $-2kc = \ln g$. Hence on substituting for c, $-2kx = \ln |(g - ky)/g|$. Solving for y, $y = v^2 = gk^{-1}(1 - e^{-2kx})$. As $x \to \infty$, the velocity $v \to$ the terminal value $(gk^{-1})^{1/2}$.