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ABSTRACT. In this paper we propose goodness-of-fit tests for Aalen’s additive risk model. They
are based on test statistics the asymptotic distributions of which are determined under both the null
and alternative hypotheses. The results are derived using martingale techniques for counting pro-
cesses. An important feature of these tests is that they can be adjusted to particular alternatives.
One of the alternatives we consider is Cox’s multiplicative risk model. It is perhaps remarkable that
such a test needs no estimate of the baseline hazard in the Cox model. We present simulation studies
which give an impression of the performance of the proposed tests. In addition, the tests are applied
to real data sets.
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1. Introduction

In Aalen’s additive risk model which is used in survival analysis and recurrent event analysis
an n-variate counting process N(t)= (N1(t), . . ., Nn (t))T is observed together with certain
covariates Yij(t), j =1, . . ., k for each component Ni(t). The covariates and the counting pro-
cess are linked together by the assumption that the intensity �(t)= (�1(t), . . ., �n(t))T of N(t)
has the form

�i(t)=
k∑

j=1

Yij(t)�j(t), (1)

where �j(t) are the unknown deterministic quantities that need to be estimated. The model was
originally introduced by Aalen (1980). Further discussion of it including asymptotic results
for estimators of �j(t) can be found in Aalen (1989, 1993), Andersen et al. (1993), Huffer &
McKeague (1991) and McKeague (1988a).

Goodness-of-fit of the model has been discussed in several papers. In McKeague & Utikal
(1991) the fit of Aalen’s model was compared to the fit in a larger class of models. In order
to achieve an asymptotic χ2-distribution it is necessary to partition the observation interval
and the space the covariates take their values in. In particular, if the covariates are multi-
dimensional (i.e. k > 1) this partitioning might prove difficult. The simulation study in
McKeague & Utikal (1991) shows that large sample sizes are required to ensure that the ob-
served level is close to the nominal level.

Kim et al. (1998), Yuen & Burke (1997) and Song et al. (1996) considered goodness-of-fit
in a smaller semiparametric model in which

�i(t)= (�0(t)+�TZi)Ri(t), (2)
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where Zi ∈ Rp are time-independent covariates, Ri(t) ∈ {0, 1} are at risk-indicators, � ∈ Rp is
an unknown regression parameter, and �0(t) is an unobservable baseline intensity.

Aalen (1993) suggested the use of so-called martingale residuals. He used graphical meth-
ods to assess goodness-of-fit and discussed some suggestions for formal tests based on grouped
martingale residuals.

In Grønnesby & Borgan (1996) martingale residual processes grouped after a certain ‘risk

score’ were considered. Time-independent covariates Zi are assumed and the ‘risk score’ �̂
T

Zi

is obtained by fitting the smaller model (2). The sum of the martingale residuals in each group
is used to construct an asymptotically χ2-distributed test statistic.

In this paper, we propose tests based on an idea similar to the above-mentioned martingale
residuals. Assume that c(t)= (c1(t), . . ., cn(t))T is a vector of predictable (and observable) sto-
chastic processes that is perpendicular to the columns of Y(t)= (Yij(t))i=1,…,n, j=1,…,k , in
the sense that Y(t)Tc(t)=0. Then under Aalen’s model and some regularity conditions,

T̂ (t) := 1√
n

∫ t

0
c(s)T dN(s)

is a local martingale with mean zero since
∫ t

0 c(s)T�(s) ds = ∫ t
0 c(s)TY(s)�(s) ds =0. So T̂ (t)

should fluctuate around 0. We will consider c(t) defined via a projection of some suitably
chosen vector d(t) onto the space orthogonal to the columns of Y(t). Our test statistic T̂ (t)
can be interpreted as the sum of weighted martingale residuals with time-dependent weights
di(t). We will suggest choices of d(t) to detect certain alternatives. One of the choices of d(t)
we consider is designed to detect the multiplicative risk model introduced by Cox (1972). In
some cases, as for example in the Cox model, the appropriate choice of d(t) may depend on
a finite-dimensional parameter � ∈ Rp, p ∈ N. Consequently, the statistic T̂ (t) depends on �.
Replacing this parameter by an estimate �̂ results in a new statistic T̂ ∗(t). We show that if �̂

is n1/2-consistent then under mild conditions the statistics T̂ (t) and T̂ ∗(t) are asymptotically

equivalent, i.e. T̂ (t) − T̂ ∗(t) P→ 0. This allows to use T̂ ∗(t) instead of T̂ (t).
Here is an outline of the following sections. In section 2, we show asymptotic results con-

cerning T̂ and T̂ ∗ which we use in section 3 to construct tests. Some of these tests are of
Kolmogorov–Smirnov type. In section 4, we consider the behaviour of the tests under alter-
natives and suggest how d(t) can be chosen. We discuss conditions under which our asymptotic
results hold for these choices of d(t). In section 5, we consider the case where the individuals
are i.i.d. and show consistency of our tests. In section 6, we present simulation studies similar
to those of McKeague & Utikal (1991). Our tests perform satisfactorily if (1) holds, even for
small sample sizes. Under alternatives, our tests achieve a far better power than the test pro-
posed in McKeague & Utikal (1991) (which is not surprising since our tests are adjusted to
detect certain alternatives). In section 7, we apply our tests to a data set from software reliabil-
ity (Gandy & Jensen, 2004), the Stanford heart transplant data (Miller & Halpern, 1982) and
the primary biliary cirrhosis (PBC) data (Fleming & Harrington, 1991). Finally, we present
some conclusions in section 8.

We always write matrices and vectors in bold face (M, x) and if we refer to elements of
a matrix or a vector we denote the elements by Mij or xi . Furthermore, Mi denotes the ith
row of M, i.e. if M has k columns, Mi = (Mi1, . . ., Mik). Stochastic convergence is denoted by
P→ and convergence in distribution in the sense of Billingsley (1999) is denoted by d→. Con-

vergence in this paper will always be as n → ∞ unless indicated otherwise. If a matrix A ∈
Rk×k is not invertible then A−1 is defined to be the k × k matrix with all elements equal to 0.
For vectors, ‖·‖ denotes the Euclidean norm and for matrices, ‖·‖ denotes the corresponding
matrix norm, i.e. ‖A‖= sup‖Ax‖ where the sup is over all vectors x such that ‖x‖=1. For
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sequences (Xn), n ∈ N of random variables we say Xn =OP(1) if for each ε> 0 there exists
K > 0 such that supn∈N P(|Xn|> K ) < ε. If (an), n ∈ N is another sequence we write Xn =OP(an)
if Xn/an =OP(1). If (Xn), n ∈ N is a sequence of random vectors, OP(·) is defined in the same
way with |·| replaced by ‖·‖.

2. Asymptotic results

We want to be able to study the behaviour of the test statistics that will be defined in sec-
tion 3 not only under the assumption that Aalen’s model is the true underlying model, i.e. (1)
holds, but also under alternative hypotheses (see section 4). Therefore, we derive asymptotic
results that do not require that (1) holds. We only assume that our counting process N(t) has
an intensity �(t).

More precisely for some �, 0 < �<∞, let T= [0, �] be the interval and (�, F , P) the prob-
ability space on which all stochastic processes in this paper are defined. D(T) denotes the
space of càdlàg functions from T to R, equipped with the Skorokhod topology and its Bo-
rel-�-algebra. Let k ∈ N be the number of covariates per component of N(t). For each n ∈ N,
n ≥ k, let the following stochastic elements be given on a filtered probability space. To ease
notation we will not make the dependence on n explicit. Let N(t)= (N1(t), . . ., Nn(t))T be an
adapted multivariate counting process whose elements have no common jumps. We assume
that N(t) admits an intensity �(t)= (�1(t), . . ., �n(t))T, i.e. �(t) is a locally bounded predictable
process and M(t) := (M1(t), . . ., Mn(t))T := N(t) − ∫ t

0 �(s) ds is a local martingale. Furthermore,
let the covariates Y(t)= (Yij(t)) be an n × k matrix of locally bounded predictable processes.
Let c(t)= (c1(t), . . ., cn(t))T be a vector of locally bounded predictable processes that satisfies
Y(t)Tc(t)=0 for all t ∈ T. As we aim at a convergence result under Aalen’s model as well as
under alternatives the asymptotic result will be for

T (t) := 1√
n

∫ t

0
c(s)T dM(s).

As estimator for the variance of T (t) we will use the variation process

Ĝ(t) := [T ](t)= 1
n

n∑
i=1

∫ t

0
c2

i (s) dNi(s).

Of course, if (1) holds true, then for all t ∈ T:

T̂ (t)−T (t)= 1√
n

∫ t

0
c(s)T

�(s) ds = 1√
n

∫ t

0
c(s)TY(s)�(s) ds =0.

We introduce some additional notation to be used throughout the paper which will ease
the presentation considerably. For matrices A ∈ Rn×a, B ∈ Rn×b and vectors x ∈ Rn with a, b,
n ∈ N we define

�A= 1
n

AT1, AB= 1
n

ATB, AxB= 1
n

ATdiag(x)B,

where 1= (1, . . ., 1)T ∈ Rn and diag(x) denotes the diagonal matrix with the elements of x on
its diagonal. More generally, if k ∈ N, a1, . . ., ak ∈ N and for all j =1, . . ., k, Aj ∈ Rn×aj we
define for all bj ∈ {1, . . ., aj}, j =1, . . ., k,

A1 · · ·Ak
b1,…,bk := 1

n

n∑
i=1

k∏
j=1

Aj
ibj

= 1
n

n∑
i=1

A1
ib1

· · ·Ak
ibk

.

We call A1 · · ·Ak product mean. The Aj are allowed to be random and may also depend on
further parameters which will be indicated in parentheses, e.g. if A1 and A2 depend on t ∈T
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then A1A2(t)= (1/n)A1(t)TA2(t). If A1, . . ., Ak depend on � ∈ �, where � is some measurable
space, we say that A1 · · ·Ak converges uip (uniformly in probability) on � if there exists a

deterministic, measurable, bounded function
−−−−−⇀
A1 · · ·Ak : � → Ra1×···×ak such that for all bj ∈

{1, . . ., aj}, j =1, . . ., k,

sup
�∈�

∣∣∣∣A1 · · ·Ak
b1,…,bk (�)−−−−−−⇀

A1 · · ·Ak
b1,…,bk (�)

∣∣∣∣ P→0.

We will use �=T and �=C × T for some C ⊂ Rp.
Using the new notation with the above c and � the following proposition is an immediate

consequence of Rebolledo’s theorem (Andersen et al., (1993), p. 78).

Proposition 1
If c�c converges uip on T and n− 1

2 supi=1,…,n
t∈T

|ci(t)| P→ 0 then

T d→m in D(T),

where m is a continuous, mean-zero Gaussian martingale with covariance Cov(m(s), m(t))=∫ s∧t
0

−⇀
c�c(u) du. Furthermore, Ĝ(t) P→ Var(m(t)) uniformly in t ∈ T.

A natural way to define c(t) is to take a locally bounded predictable stochastic process d(t)
and project it onto the space orthogonal to the columns of Y(t). Let Q(t) be the projection
matrix onto this space. Being a projection matrix, Q(t) satisfies Q(t)=Q(t)T =Q2(t). If Y(t) has
full rank then Q(t)= I − Y(t)(Y(t)TY(t))−1Y(t)T (if Y(t) does not have full rank then (Y(t)TY(t))−1

can be replaced by a generalized inverse). So the setup we are dealing with is c(t)=Q(t)d(t).
If we choose di(t)=1 for all i and t then T̂ (t)=n−1/21T

∫ t
0 Q(s) dN(s) is the scaled sum of the

so-called martingale residuals (Aalen 1989, 1993).
The following conditions will be needed to show weak convergence of T (t). They are sim-

ilar to conditions used in McKeague (1988a). In fact, our first condition (D1) contains the
conditions (A2), (A3) and parts of (A1) of McKeague (1988a).

(D1) YY converges uip on T,
−⇀
YY is continuous,

−⇀
YY(t) is invertible for all t ∈ T and

n−1/2 supi=1,…,n
t∈T

|Yij(t)| P→ 0 for j =1, . . ., k.

(D2) Y�Y, Yd, d�d, Y�d converge uip on T and n−1/2 supi=1,…,n
t∈T

|di(t)| P→ 0.

Theorem 1
Assume the conditions (D1) and (D2) hold and that c(t)=Q(t)d(t). Then

T d→ m in D(T),

where m is a continuous, mean-zero Gaussian martingale with covariance Cov(m(s), m(t))=
G(s ∧ t), G(t)=∫ t

0

−−−−−−⇀
(Qd)�(Qd)(u) du. Furthermore, Ĝ(t) P→ G(t) uniformly in t ∈ T.

Proof. Lemma 9 in appendix B ensures n−1/2 supi=1,…,n
t∈T

|(Q(t)d(t))i | P→ 0. By lemma 8 in

appendix B, c�c= (Qd)�(Qd) converges uip on T. Hence we can apply proposition 1.
We can actually extend the above to allow d to depend on a finite-dimensional parameter.

We will make use of this extension in section 4.3 to detect Cox’s model as alternative. Suppose
B ⊂ Rp is an open set and d : B × T → Rn is a random function. We require that for fixed
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� ∈ B the process d(�, ·) : T → Rn is a locally bounded predictable stochastic process. In our
test statistic we would like to use d with a certain �0 ∈B which in general is not observable.
We assume that we have an estimator �̂ for �0. Note that we do not require d(�̂, ·) to be
adapted. This will allow �̂ to use the entire information up to time �. The modification of the
test statistic T̂ we get is

T̂ ∗(t) :=n−1/2
∫ t

0
d(�̂, s)TQ(s) dN(s).

As before the convergence results will not be for T̂ ∗ itself but for

T ∗(t) :=n−1/2
∫ t

0
d(�̂, s)TQ(s) dM(s).

Under Aalen’s model we have T̂ ∗(t) − T ∗(t)=0. As an estimator for the variance of T ∗ we
will use

Ĝ∗(t) := 1
n

∫ t

0
d(�̂, s)TQ(s) diag (dN(s))Q(s)d(�̂, s).

Using d(t) := d(�0, t) in the definition of T and Ĝ we will show that T ∗ − T and Ĝ∗ − Ĝ both
converge to zero. For this we need some conditions.

(D3) d(·, s, �) : B → Rn is twice continuously differentiable for fixed s ∈ T, � ∈ �.

We use ∇�di(�, s) := ∂
∂��

di(�, s), ∇�d(�, s) := ∂
∂��

d(�, s), ∇�∇	d(�, s) := ∂
∂��

∂
∂�	

d(�, s) and

∇d(�, s) := (∇1d(�, s), . . ., ∇pd(�, s)).

(D4) ��, Y�Y, (∇d)�Y(�0, ·), (∇d)�(∇d)(�0, ·) converge uip on T. There exists an open set C ⊂
B such that �0 ∈ C, dY, (∇d)Y, (∇�∇	d)Y, �, 	=1, . . ., p converge uip on C × T and
−⇀
dY(·, t),

−−−⇀
(∇d)Y(·, t),

−−−−−−⇀
(∇�∇	d)Y(·, t), �, 	=1, . . ., p are continuous in �0 uniformly in t ∈

T. For �, 	=1, . . ., p, j =1, . . ., k,

n−1/4 sup
i=1,…,n

t∈T

|Yij(t)| P→0, n−1/4 sup
i=1,…,n
t∈T, �∈C

|di(�, t)| P→0,

n−1/4 sup
i=1,…,n
t∈T, �∈C

|(∇�di)(�, t)| P→0 and n−1/2 sup
i=1,…,n
t∈T, �∈C

|(∇�∇	di)(�, t)| P→0.

Theorem 2
Suppose that (D1), (D3) and (D4) hold.

If c(t)=Q(t)d(�0, t) and �̂ − �0 =OP(n−1/2) then

T ∗ −T P→0 and Ĝ∗ − Ĝ P→0 uniformly in t ∈T.

The proof is relegated to appendix C.

3. Construction of test statistics

We construct tests for the hypothesis that Aalen’s model is true, i.e. for

H0 :�(t)=Y(t)�(t) for some deterministic, bounded, measurable � :T→Rk .

We only describe the construction of tests from T̂ and Ĝ. Construction of tests from T̂ ∗ and
Ĝ∗ is done in a similar way.

We assume that the conditions of theorem 1 hold. Under H0, we are in the situation that
T̂ d→ m where m is a mean zero Gaussian martingale whose variance G(t) can be estimated
consistently by Ĝ(t) uniformly in t. There are various ways to construct asymptotic tests in
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such a situation. We present three test statistics the asymptotic distributions of which are
explicitly known. We always require G(�) > 0.

T (1) := Ĝ(�)−1/2T̂ (�) d→N(0, 1).

T (2) := sup
t∈T

∣∣∣∣∣ Ĝ(�)1/2

Ĝ(�)+ Ĝ(t)
T̂ (t)

∣∣∣∣∣ d→ sup
t∈[0, 1

2 ]

|W 0(t)|,

where W 0(t) is a Brownian bridge. This transformation can for example be found in Hall &
Wellner (1980).

T (3) := sup
t∈T

∣∣∣Ĝ(�)−
1
2 T̂ (t)

∣∣∣ d→ sup
t∈[0, 1]

|W (t)|,

where W (t) is a Brownian motion. The convergence is based on the fact that m(t) d=W (G(t)),
where G and m are as in theorem 1.

An explicit formula for the asymptotic distribution of T (2) can be found in Hall & Well-
ner (1980). Formulas for the asymptotic distribution of T (3) can be derived from Borodin &
Salminen (2002). For the test statistics T (2) and T (3) we always reject at the upper tail. For the
test statistic T (1) we will indicate whether we use a two-sided test or a one-sided test (rejecting
at the upper tail).

4. Behaviour under alternatives

In this section we will consider choices of d(t) in theorem 1 and d(�, t) in theorem 2 to test
against three particular alternatives. We start with propositions concerning the asymptotic
behaviour of T̂ and T̂ ∗ under alternatives. We need the following condition:

(D5) d� and Y� converge uip on T.

Proposition 2
If (D1), (D2) and (D5) hold and c(t)=Q(t)d(t) then

n−1/2T̂ (t) P→H(t) :=
∫ t

0

−−−⇀
(Qd)�(s) ds

uniformly in t ∈ T.

Proof. Since n−1/2T̂ (t)=n−1/2(T̂ (t) − T (t))+ n−1/2T (t) and n−1/2T (t) P→ 0 uniformly in t ∈ T

by theorem 1, it is enough to consider n−1/2(T̂ (t) − T (t))= ∫ t
0 (Qd)�(s) ds. By lemma 8 (Qd)�

converges uip on T.
In the next proposition we consider the case where d may depend on a finite-dimensional

parameter. In condition (D2) we set d(t) := d(�0, t).

Proposition 3
Suppose (D1), (D2), (D3) and (D4) hold, Y� converges uip on T, and d� converges uip on
C × T (where C is as in (D4)). If c(t)=Q(t)d(�0, t) and �̂ − �0 =OP(n−1/2) then

n−1/2T̂ ∗(t) P→H(t)

uniformly in t ∈ T, where H(t)= ∫ t
0

−−−⇀
(Qd)�(�0, s) ds.
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Proof. By lemma 10, dY(�̂, ·) → −⇀
dY(�0, ·) and d�(�̂, ·) → −⇀

d�(�0, ·) converge uip on T.

Lemma 8 implies convergence of (Qd)�(�̂, ·) → −−−⇀
(Qd)�(�0, ·) uip on T. Hence, n−1/2(T̂ ∗(t) −

T ∗(t))= ∫ t
0 (Qd)�(�̂, s) ds converges uip on T to H(t). Considering that theorem 1 together

with theorem 2 implies n−1/2T ∗ → 0 uip on T finishes the proof.
Under H0 we know that T̂ =T (or T̂ ∗ =T ∗) and thus H(t)=0 in this case. For alterna-

tives in which H(t) �= 0, the proposed tests from section 3 can be seen to be consistent (note
that theorem 1 yields the stochastic convergence of Ĝ(t)). More about H(t) �= 0 will be said
in section 5.

For the three alternatives we consider we will suggest choices of d(t) (or d(�, t)). We also
consider the conditions required for the theorems and propositions presented so far in these
special cases.

4.1. Using an estimator of the intensity

If the intensity of the alternative (say �(s)) is completely known then we suggest to choose
d(s)= �(s). Then under the alternative (Qd)�(t)= (1/n)(Q(t)�(t))(Q(t)�(t)) ≥ 0, and proposition
2 shows that H(t) ≥ 0, enabling us to use one-sided tests.

However, the intensity of the alternative is usually not known precisely. If we have a uni-
formly consistent estimator of the intensity under the alternative, using this estimator as choice
for d allows us to use a one-sided test as the following lemma shows. Recall that d has to be
predictable.

Lemma 1
Suppose that (D1), (D2) and (D5) hold, that c(t)=Q(t)d(t), �� converges uip on T,

supi=1,…,n
t∈T

|di(t) − �i(t)| P→ 0 and supt∈T |�(t)|=OP(1), supt∈T |Y|j(t)=OP(1), j =1, . . ., k

(where |Y|j(t) := 1
n

∑n
i=1 |Yij(t)|). Then

n−1/2T̂ (t) P→H(t)=
∫ t

0

−−−⇀
(Q�)�(s) ds ≥0.

Proof. By proposition 2, H(t)=∫ t
0

−−−⇀
(Qd)�(s) ds. Consider the decomposition

(Qd)�= (Q(d−�))�+ (Q�)�. (3)

The second term on the right-hand side of (3) converges uip on T by lemma 8. We will show
that the first term on the right-hand side of (3) is asymptotically negligible. Since

|(d−�)�(t)|≤ 1
n

n∑
i=1

|di(t)−�i(t)|�i(t)≤ sup
i=1,…,n

s∈T

|di(s)−�i(s)|�(t) P→0

uniformly in t ∈ T and similarly |(d − �)Yj(t)| P→ 0 uniformly in t ∈ T, we can apply lemma 8

and get convergence of (Q(d − �))� uip on T and
−−−−−−−−⇀
(Q(d − �))�(t)=0.

Similarly, under the conditions of proposition 3, it can be shown that, n−1/2T̂ ∗ converges to a

non-negative process. A condition needed for this is supi=1,…,n
t∈T

|di(�̂, t) − �i(t)| P→ 0 for which

the following is sufficient: �̂
P→ �0, di(�

0, t)=�i(t) and a type of ‘equicontinuity’ of di(�, t)
at �0: for each ε> 0 there exists a neighbourhood C of �0 such that P(supi=1,…,n

t∈T, �∈C
|di(�, t) −

di(�
0, t)|> ε) → 0.
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4.2. Additional covariate

As a second alternative, we consider a model with additional covariates:

Hd :�(t)=X(t)�(t), for some deterministic, bounded, measurable � :T→Rk+k′
,

where X is an n × (k + k′) matrix of predictable, observable processes whose submatrix con-
sisting of the first k columns equals Y. The parameter � is unknown.

We choose d := (X1, k+1, . . ., Xn, k+1)T, i.e. d is column k + 1 of X. Using the boundedness of
�, the following lemma is immediate.

Lemma 2
Suppose XX, XXX converge uip on T,

−⇀
YY is continuous,

−⇀
YY(t) is invertible for all t ∈ T and

n−1/2 supi=1,…,n
t∈T

|Xij(t)| P→ 0 for j =1, . . ., k.

If Hd is true then (D1), (D2) and (D5) hold.

Since H0 is included in Hd , we need not consider H0 separately.

4.3. Cox’s model as alternative

The third alternative is the model introduced by Cox (1972). Let the covariates in Cox’s model
be the entries of an n × p matrix Z of locally bounded predictable processes. Of course, we
could have Z(t)=Y(t) or Z(t) could consist of certain columns of Y(t), but we do not require
this to be the case. Let Ri , i =1, . . ., n be predictable processes taking values in {0, 1} and let
B ⊂ Rp be open and convex. Cox’s model assumes that

Hc :�i(t)=�0(t)Ri(t) exp(Zi(t)�
0), i =1, . . ., n,

for some �0 ∈ B and some deterministic, bounded, measurable �0 : T → [0, ∞), where Z and
Ri are observable, �0 and �0 are not. We will base our test on T̂ ∗ with

di(�, s) :=Ri(s) exp(Zi(s)�), i =1, . . ., n.

The parameter �0 is usually estimated by a partial maximum likelihood approach (Cox, 1972;
Andersen & Gill, 1982), i.e. �̂ is the maximizer of C(�, �) where

C(�, t) :=
∫ t

0
�TZ(s)T dN(s)−

∫ t

0
log(nd(�, s))n dN(s).

Note that we do not need to estimate �0(t). Since under Hc we have (Qd)�(�0, t)=
(1/n)(Q(t)d(�0, t))T(Q(t)d(�0, t))�0(t) ≥ 0, proposition 3 can be used to see H(t) ≥ 0 and hence
one-sided tests can be applied to detect Cox’s model.

Most conditions required for theorems 1, 2 and proposition 3 can be easily transformed
to the special situation we are considering. However, the condition �̂ − �0 =OP(n−1/2) needs
special attention. If Cox’s model (Hc) holds, asymptotic normality of �̂ is shown in Andersen
& Gill (1982 p. 1105). This implies �̂ − �0 =OP(n−1/2). For our purposes we need to know the
asymptotic behaviour of �̂ under H0 as well. Asymptotic normality of n1/2(�̂ − �a) for some
�a under misspecified models has been considered previously by Lin & Wei (1989), Sasieni
(1993) and Fine (2002) under an i.i.d. setup allowing only one event per individual. We relax
these requirements but confine ourselves to showing �̂ − �a =OP(n−1/2) under H0, where

�a :=arg max�∈B a(�, �)

and a(�, t) := ∫ t
0

(
�T−⇀

ZY(s) − log(
−⇀
d (�, s))

−⇀
Y (s)T

)
�(s) ds. The main idea for the proof of this

is similar to the proof under Hc given in Andersen & Gill (1982). First, uniform stochastic
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convergence of X (�, t) := (1/n)C(�, t)+ (log n)N(t) to a(�, t) is shown. Since X (�, �) is con-
cave in �, convex analysis can be used to transfer the convergence of X (�, �) to its maximizer
�̂. A suitable Taylor expansion of X (�, �) around �a allows the statement about n1/2(�̂ − �a).

Lemma 3
Suppose that

(i) for each � ∈ B, d(�, ·) converges uip on T and the mapping
−⇀
d (�, ·) is bounded away from

0,
(ii) Y, YZ and ZZY converge uip on T,

(iii) �a exists and is unique.

If H0 holds then �̂
P→ �a. If furthermore there exists an open C ⊂ B with �a ∈ C such that

(iv) d, Zd, ZdZ converge uip on C × T,

(v)
∫ �

0 (
−⇀
d (�a, s)−2−⇀Zd⊗2(�a, s) − −⇀

d (�a, s)−1−−⇀ZdZ(�a, s))
−⇀
Y (s)T�(s) ds is invertible and

(vi) d(�a, t) − −⇀
d (�a, t),

−⇀
Zd(�a, t) − Zd(�a, t),Y(t) − −⇀

Y (t), ZY(t) − −⇀
ZY(t)=OP(n−1/2) uniformly in

t ∈ T

then �̂ − �a =OP(n− 1
2 )

Above, we used the notation a⊗2 =aaT for column vectors a. The proof is relegated to
appendix C.

5. The i.i.d. case

In this section, we want to show consistency of our tests in the case of i.i.d. observations. The
main tool we use is the following. Let A be the set of processes x whose paths are left-con-
tinuous with right-hand limits and satisfy E supt∈T |x(t)|2 <∞. Suppose (ai , bi), i ∈ N are i.i.d.
and ai , bi ∈ A for all i ∈ N. Then

E sup
t∈T

|a1(t)b1(t)|≤ (E sup
t∈T

|a1(t)|2E sup
t∈T

|b1(t)|2)0.5<∞

and hence by the strong law of large numbers of Rao (1963),

sup
t∈T

∣∣∣∣∣1n
n∑

i=1

ai(t)bi(t)−E(a1(t)b1(t))

∣∣∣∣∣→0 almost surely.

Hence, ab converges uip on T and
−⇀
ab(t)=E[a1(t)b1(t)]. For fixed t ∈ T, we will interpret a1(t)

and b1(t) as elements of the Hilbert space L2 := L2(P) of square integrable random variables
with the usual scalar product < · , ·>2 and thus we may write

−⇀
ab(t)=< a1(t), b1(t)>2.

The following lemma shows how the orthogonal projection Q(t) : Rn → Rn carries over to the
orthogonal projection Qt : L2 → L2 onto span(Y11(t), . . ., Y1k(t))⊥.

Lemma 4
Suppose (ai , bi , Yi1, . . ., Yik), i ∈N are i.i.d. and ai , bi , Yi1, . . ., Yik ∈A.

If (< Y1v(t), Y1
(t) >2)v, 
=1,…,k is invertible for all t ∈ T and continuous in t ∈ T, then a(Qb)
converges uip on T and

−−−⇀
a(Qb)(t)=< a1(t), Qtb1(t)>2.
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Proof. As already noted, ab, aY, YY and Yb converge uip on T and

−⇀
ab(t)=< a1(t), b1(t) >2,

−⇀
aY(t)= (< a1(t), Y1j(t) > 2)T

j=1,…,k ,

−⇀
YY(t)= (< Y1�(t), Y1
(t) >2)�, 
=1,…,k ,

−⇀
Yb(t)= (< Y1j(t),b1(t) >2)j=1,…,k .

By lemma 8, a(Qb) converges uip on T and

−−−⇀
a(Qb)(t)=< a1(t), b1(t)>2 −(< a1(t), Y1j(t)>2 )T

j (
−⇀
YY(t))−1(< Y1j(t), b1(t)>2 )j .

It remains to use the linearity of < · , ·>2 and lemma 12 to accomplish the proof.
We want to use the above to show consistency of our tests for the cases of section 4. Gener-

ally speaking, we are interested in showing H(t)=0 for all t ∈ T iff Aalen’s model (H0) holds
true.

Consider the setup of section 4.1 where di(t) is a uniformly consistent estimator of �i(t).
Suppose (di , �i , Yi1, . . .,Yik) are i.i.d. and di , �i , Yi1, . . .,Yik ∈ A. Then under the conditions of
lemma 1,

H(t)=
∫ t

0
<�1(s), Qs�1(s)>2 ds =

∫ t

0
‖Qs�1(s)‖2

2 ds,

where ‖x‖2
2 =< x, x >2. Hence, H(t)=0 iff �1(t) ∈ span(Y11(t), . . ., Y1k(t)) for almost all t ∈ T,

i.e. Aalen’s model holds true.
Now consider the setup of section 4.2 for detecting an additional covariate. Assume (Xi1, . . .,

Xi, k+k′ ) are i.i.d. and Xi1, . . ., Xi, k+k′ ∈ A. If < X1, k+1, Xk+� >2 =0 for 2 ≤ v ≤ k′ then under
the conditions of lemma 2 by proposition 2

H(t)=
∫ t

0
< X1, k+1, Qs�1(s)>2 ds =

∫ t

0
< X1, k+1(s), QsX1, k+1(s) >2 �k+1(s) ds

=
∫ t

0
‖QsX1, k+1(s)‖2

2�k+1(s) ds.

Note that in this case since �k+1 may change signs on T the test statistic T (1) based on T̂ (�)
does not ensure a consistent test whereas the sup-based tests T (2) and T (3) ensure consistency.

If in the setup of section 4.3, where we want to detect Cox’s model, we assume that (di(�
0, ·),

Yi1, . . ., Yik) are i.i.d. and di(�
0, ·), Yi1, . . ., Yik ∈ A then we may use proposition 3 to get

H(t)= ∫ t
0 ‖Qsd1(�0, s)‖2

2�0(s) ds and hence

H(t)= 0∀t ∈T iff (�0(t)= 0 or d1(�0, t)∈ span(Y11(t), . . ., Y1k(t)) for almost all t ∈T).

6. Simulation results

Our simulation study uses true models which were also considered in McKeague & Utikal
(1991). As covariates, we take independent random variables xi , i =1, . . ., n that are uniformly
distributed on [0, 1]. The simulation is for classical survival analysis, i.e. we have �i(t)=0 if
Ni(t−)=1. We assume independent right censoring with i.i.d. random variables Ci , i =1, . . ., n,
following an exponential distribution with parameter chosen such that 27% of the observations
before � are censored. Let Ri(t) := I{Ci > t, Ni(t−)=0}. In our simulations we have
Yi(t)= (1, xi)Ri(t).

First, we consider d chosen as in section 4.3 to make our tests powerful against Cox’s model.
As covariates Z for Cox’s model we use Zi(t)= (xi). Table 1 gives levels and powers at the
asymptotic 5 per cent level for the tests of section 3. We also display some results from the
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Table 1. Observed levels and powers for tests against Cox’s model as alternative (section 4.3) with asymp-
totic level 5%. The number of samples was 10,000. We used �=2. The test based on T (1) is one-sided.
Results from McKeague & Utikal (1991, Table 1b) are also displayed (sample size 1000)

Observed level [�i(t)= (1+ xi)Ri(t)] Observed power [�i(t)=0.5 exp(2xi)Ri(t)]

n T (1) T (2) T (3) McKU T (1) T (2) T (3) McKU

75 0.0350 0.0272 0.0341 0.1693 0.0262 0.0538
150 0.0430 0.0399 0.0431 0.2996 0.0838 0.1354
300 0.0452 0.0420 0.0442 0.212 0.5198 0.2286 0.3084 0.243
600 0.0490 0.0472 0.0459 0.8060 0.5320 0.6276

1200 0.0468 0.0485 0.0486 0.106 0.9734 0.8847 0.9256 0.579

Table 2. Observed levels and powers using di = I{xi |∈ [0.25, 0.75]} and �=10 with asymptotic level 5%.
Tests are as derived in section 3. The number of samples was 10,000. The test based on T (1) is two-sided.
Results from McKeague & Utikal (1991, Table 1b) are also displayed (sample size 1000)

Observed level [�i(t)= (1+ xi)Ri(t)] Observed power [�i(t)= min(xi , 1 − xi)Ri(t)]

n T (1) T (2) T (3) T (1) T (2) T (3) McKU

50 0.0417 0.0187 0.0269 0.8746 0.7170 0.8194
100 0.0455 0.0287 0.0346 0.9959 0.9828 0.9919
180 0.0455 0.0348 0.0397 1.0000 1.0000 1.0000 0.912

goodness-of-fit test suggested by McKeague & Utikal (1991, Table 1b). In the simulation where
the true model is an Aalen model most observed levels are close to or below the nominal level
of 5 per cent. The tests are conservative for small n. If �i(t)=0.5 exp(2xi)Ri(t) then the power
increases as n increases with best results for the one-sided test based on T (1).

We also consider the alternative �i(t)= min(xi , 1 − xi)Ri(t). To detect this alternative we
choose di = I{xi |∈ [0.25, 0.75]}. Results of the simulations are in Table 2. The test is sensitive
against this alternative for small sample sizes. In the simulations where H0 holds, the observed
level is close to or below 5 per cent again.

Comparing these results to those of McKeague & Utikal (1991) we see that our tests are
much better at attaining the prescribed level in the simulations in which H0 holds. Further-
more, we get a greater power against the stated alternatives. Of course, the greater power is
not surprising since the test of McKeague & Utikal (1991) is an omnibus test and our test
was designed to detect these specific alternatives.

7. Application to real data sets

We applied our tests to three real data sets. The first from software reliability is chosen to
illustrate the applicability of the methods outside classical survival analysis where we may have
multiple events per point process. In the second example we can show that the fit of an addi-
tive model suggested by Grønnesby & Borgan (1996) to the PBC data (Fleming & Harrington,
1991) is not ideal. In the last example we see that for the well-known Stanford heart trans-
plant data Miller & Halpern (1982) an Aalen model cannot be rejected when tested against
the standard Cox model.
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Table 3. p-values for the software reliability data sets from Gandy & Jensen (2004) using di(t)=1. The
test based on T (1) is two-sided

Test statistic T (1) T (2) T (3)

One covariate 0.0100 0.0022 0.0155
Three covariates 0.7805 0.3655 0.5914

7.1. A data set from software reliability

We start by considering a data set from software reliability used in Gandy & Jensen (2004). It
contains bug reports of 73 open source software projects. Two different sets of covariates were
considered in the aforementioned paper. The first includes only the current size of the source
code of the projects as covariate. The second includes the size of the source code of the pro-
jects a fixed time ago, changes in the size of source code since then and the number of recent
bug reports. Note that in both cases no baseline in the form of a covariate identically equal
to 1 was included. Checking this using d(t)=1 as suggested in section 4.2 we get the p-values
of Table 3 for our tests applied to the two different sets of covariates. In the data set with
one covariate all three tests suggest a bad fit of the model that could possibly be improved
by including a baseline. In the case of three covariates the hypothesis that the Aalen model is
the correct one is supported. This agrees with the conclusion of Gandy & Jensen (2004).

7.2. PBC data

Our next example considers the PBC data presented in Fleming & Harrington (1991), where
it is analysed at length using Cox’s model. It contains data about the survival of 312 patients
with PBC. We use the corrections of the data set given by Fleming & Harrington (1991
p. 188). The final Cox model of Fleming & Harrington (1991) uses the covariates age, oedema,
log(albumin), log(bilirubin) and log(prothrombin time).

In Grønnesby & Borgan (1996) the data set is analysed with Aalen’s model using the
covariates baseline, bilirubin, oedema dichotomized (0.5 pooled together with 0), albumin
(zero for the highest half then linear), prothrombin time (zero for the lowest half then lin-
ear), age, interaction of age and prothrombin time. Grønnesby & Borgan (1996) investigate
the fit of the linear model and the final Cox model of Fleming & Harrington (1991) and con-
clude that ‘the fit of both models is acceptable’. Their formal goodness-of-fit test for the linear
model yields a p-value of 0.075 for Aalen’s model and 0.197 for the Cox model. Furthermore,
they mention that the linear model ‘suffers from [. . .] negative estimated intensities’.

Using the just mentioned coding of covariates for both models our one-sided test of Aalen’s
model against Cox’s model based on T (1) leads to a p-value of 0.034 rejecting Aalen’s model
at the 5 per cent level.

7.3. Stanford heart transplant data

The last example is concerned with the Stanford heart transplant data given by Miller &
Halpern (1982). We consider those n=157 patients receiving heart transplants with complete
records. Two covariates are of interest: age at time of transplant (which we denote ai) and
a donor–recipient mismatch score (which we denote bi). Among the models fitted by Miller
& Halpern (1982) are several Cox models. The mismatch score bi is not significant in a Cox
model with covariates Zi = (ai , bi). Based on a graphical method they state that the fit of the
model with covariates Zi = (ai) is ‘not ideal’. To improve the fit they consider a model based
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on the covariates Zi = (ai , a2
i ) for which they find no lack of fit. These findings are supported

using formal tests by Lin et al. (1993) and Marzec & Marzec (1997).
In the sequel we fit and test Aalen’s additive model. Let Ri(t) denote the at-risk indicator of

the ith patient. If we use the model Yi(t)= (1, ai)Ri(t) our two-sided test based on T (1) using
di(t)=bi is not significant (p-value 0.401) whereas the test using di(t)=a2

i is significant (p-value
0.004). Testing against Cox’s model with the one-sided test based on T (1) and Zi = (ai) is sig-
nificant as well (p-value 0.0167). If we include a2

i as suggested by our test, our test against
Cox’s model with the one-sided test based on T (1) and Zi = (ai , a2

i ) is not significant (p-value
0.153). It is not clear whether the Cox model or the additive model has a better fit.

8. Conclusions and outlook

As mentioned in the introduction goodness-of-fit for Aalen’s additive risk model has been
considered before only by a few authors who concentrated on smaller classes of models, on
graphical methods or presented a so-called omnibus test, which is not directed against spe-
cific alternatives. In this paper, we propose goodness-of-fit tests based on martingale residuals
which can be adjusted to detect particular alternatives. They are characterized by the following
properties:

• The test statistics are asymptotically distribution free.
• The asymptotic distribution of the test statistics can be determined under both the null and

alternative hypotheses.
• In the important i.i.d. case consistency can be proven. Note that in this case most of the

required conditions are satisfied if the covariates are bounded.
• The tests can be tailored to detect specific alternatives, in particular Cox’s model, by an

appropriate choice of d(t).
• No estimate of the baseline �0(t) is needed in the test against Cox’s model.

The next to last property gives some freedom to choose d(t) and the natural question arises
how two different choices could be compared and what could be an optimal choice then. This
question needs further investigation.

For some tests, as for example for the test against Cox’s model, we have to insert estimates
for �0, which destroy the property of predictability of d(t). But fortunately, it can be shown (see
section 2) that the resulting test statistics are asymptotically equivalent to those with the true
parameter. To assess how much power is lost due to this estimation in the Cox model we con-
ducted some simulation studies which indicate that the loss is small. For example in the setup
of section 6 with �i(t)=0.5 exp(2xi)Ri(t) and a sample size of n=300 we used di(t)= exp(2xi)
and got a p-value of 0.5267 for the one-sided test based on T (1), the simulation from section
6 with the estimated parameter resulted in a p-value of 0.5198.

The simulation studies in section 6 showed that even for moderate sample sizes the pre-
scribed level is met. Of course, no general suggestions for the sample size to attain a certain
power can be made, because this depends on the alternative to be detected.

In McKeague & Sasieni (1994), a restriction of Aalen’s model is discussed, where some of
the covariates are required to have time-independent influence. Formally, the model is given
by

HS : �(t)= Yc(t)�c + Yv(t)�v(t)

for some �c ∈ Rkc and some deterministic, bounded, measurable �v : [0, �] → Rkv , where Yv(t)=
(Y v

ij (t)) is an n × kv matrix of locally bounded predictable processes and Yc(t)= (Y c
ij (t)) is an

n × kc matrix of locally bounded predictable processes. Of course, the test proposed earlier can
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be used for this submodel as well since HS is a restriction of Aalen’s additive model. However,
the test statistic can be modified to make use of the information that �c is time-independent.
As a new test statistic we propose

T̂ = 1√
n

∫ �

0
d(s)TQv(s)

(
dN(s)−Yc(s)�̂c ds

)
where

�̂c =
(∫ �

0
Yc(s)TQv(s)Yc(s) ds

)−1 ∫ �

0
Yc(s)TQv(s) dN(s)

and Qv(s) := I − Yv(s)(Yv(s)TYv(s))−1Yv(s)T. It can be shown that T̂ contains an orthogonal pro-
jection in a suitable space. A detailed discussion of the properties of this test statistic would
go beyond the scope of this article and will appear elsewhere.

Of course, there are many other regression models (e.g. Martinussen & Scheike, 2002; Sche-
ike & Zhang, 2002), to which our tests could also be adjusted.
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Appendix

Appendix A. Convergence of inverted matrices

This section shows how the uniform stochastic convergence of time-dependent random matri-
ces can be carried over to their inverses. We use this to get uniform stochastic convergence
of (YY(t))−1 from that of YY(t). A similar lemma was already stated in McKeague (1988a)
without detailed proof. We correct a slight error and give a full proof.

Lemma 5
Suppose A(n)(t), t ∈ T, n ∈ N are k × k matrices of random processes. If there exists a continu-

ous function a : T → Rk×k such that a(t) is invertible for all t ∈ T and supt∈T ‖A(n)(t) − a(t)‖ P→ 0
then

(i) P(A(n)(t) is invertible ∀t ∈ T) P→ 1,

(ii) ∃K > 0 s.t. P(‖(A(n)(t)
)−1 ‖< K∀t ∈ T) P→ 1 and

(iii) supt∈T ‖(A(n)(t))−1 − a−1(t)‖ P→ 0.

To prove lemma 5 we need the following two lemmas.

Lemma 6
Let 0 < �<∞, T= [0, �] and k ∈ N. If a : T → Rk×k is a continuous mapping such that a(s) is
invertible for all s ∈ T then there exists an ε> 0 such that for all B : T → Rk×k, sups∈T ‖a(s) −
B(s)‖< ε implies B(s) invertible ∀s ∈ T.
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Proof. Since a(T) is compact, the set of invertible matrices GL⊂Rk×k is open and a(T)⊂GL
we can find s1, . . ., sv ∈ T and �1, . . ., �v > 0 such that a(T)⊂⋃v

i=1 U (a(si), �i) and U (a(si), 2�i)⊂
GL, where U (C, �) := {D ∈ Rk×k : ‖C − D‖<�}. It can be verified that ε := min{�1, . . ., �v}
satisfies the claim.

Lemma 7
Let p ∈ N. If C, D ∈ Rp×p are invertible and ‖D−1‖‖D − C‖< 1 then

‖C−1 −D−1‖≤ ‖D−1‖2‖C−D‖
1−‖D−1‖‖C−D‖ . (4)

Proof. Let I denote the unit matrix in Rp×p.

‖C−1 −D−1‖=‖C−1(D−C)D−1‖≤‖C−1‖‖C−D‖‖D−1‖
=‖C−1DD−1‖‖C−D‖‖D−1‖≤‖C−1D|‖D−1‖2‖C−D‖.

By the assumption, ‖D−1(D − C)‖ ≤ ‖D−1‖‖D − C‖< 1. Hence,

‖C−1D‖=‖(D−1C)−1‖=‖(I− (D−1(D−C)))−1‖=‖
∞∑

n=0

(D−1(D−C))n‖

≤
∞∑

n=0

‖D−1(D−C)‖n=(1−‖D−1(D−C)‖)−1 ≤(1−‖D−1‖‖C−D‖)−1
.

Proof of lemma 5. Choose ε> 0 as in lemma 6. Then

P(∃t ∈ T s.t. A(n)(t) is singular) ≤ P(‖a − A(n)‖ ≥ ε) P→ 0.

Since a, taking inverses and ‖·‖ are continuous mappings, the compactness of T implies that
{‖a−1(s)‖ : s ∈ T} is compact. Hence, there exists a constant L > 0 such that supt∈T ‖a−1(t)‖ ≤
L.

On the event Dn :={‖a−1(t)‖‖a(t) − A(n)(t)‖< 1
2 , A(n)(t) invertible ∀t ∈T} we can use lemma

7 to see that ∀s ∈T, ‖a−1(s) − (A(n)(s))−1‖ ≤ 2L2‖a(s) − A(n)(s)‖. Since Dn ⊃{‖a(t) − A(n)(t)‖<

(2L)−1, A(n)(t) invertible ∀t ∈ T}, we have P(Dn) → 1. Hence, supt∈T ‖(A(n)(t))−1 − a−1(t)‖ P→ 0.
Let K := L + 1. Since ‖(A(n)(t))−1‖ ≤ L + ‖(A(n)(t))−1 − a−1(t)‖, we get (iii).

Remark 1. In McKeague (1988b p. 231), it is stated that ‖C − D‖<‖D‖ (instead of ‖D−1‖
‖D − C‖< 1) implies (4). This is not true as the following example shows:

Let D=
(

1 0
0 1

3

)
, C=

( 1
2 0
0 1

3

)
. Then C and D are invertible and ‖C − D‖= 1

2 < 1=‖D‖.

But ‖D−1‖=‖
(

1 0
0 3

)
‖=3 and hence, 1 − ‖D−1‖‖C − D‖=1 − 3

2 < 0, which shows that the

right-hand side of (4) is negative.

Appendix B. Some technical lemmas

In this section we present some technical lemmas mainly concerned with convergence and pro-
jections. We assume that we are in the setup introduced at the beginning of section 2.
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Lemma 8
Let a, b, � : T → Rn be random functions.

1. If (D1) holds and ab, aY and bY converge uip on T then a(Qb)= (Qa)b converges uip on T

and
−−−⇀
a(Qb)(t)=−−−⇀

(Qa)b(t)=−⇀
ab(t) − −⇀

aY(t)(
−⇀
YY(t))−1−⇀Yb(t) for all t ∈ T.

2. If (D1) holds and a�b, aY, bY, a�Y, b�Y and Y�Y converge uip on T then (Qa)�(Qb) converges
uip on T.

Proof. By (D1) we can use lemma 5 (see appendix A) to find K > 0 such that for the event
An :={YY(t) is invertible, ‖(YY(t))−1‖< K∀t ∈ T} we have P(An) → 1. On An the projection
Q(t) can be written as Q(t)= I − Y(t)(YY(t))−1 1

nY(t)T for all t ∈ T. Dropping the dependence
on t ∈T, on An this implies a(Qb)=ab−aY(YY)−1Yb and (Qa)�(Qb)=a�b−aY(YY)−1Y�b −
a�Y(YY)−1Yb−aY(YY)−1Y�Y(YY)−1Yb. Lemma 5 together with the assumptions (which include
the boundedness of the limits) finish the proof.

Lemma 9
Suppose (D1) holds, aY converges uip on T and for some �> 0 we have n−� supi=1,…,n

t∈T

|ai(t)| P→ 0,

n−� supi=1,…,n
t∈T

|Yij(t)| P→ 0 for j =1, . . ., k. Then

n−� sup
i=1,…,n

t∈T

|(Q(t)a(t))i | P→0.

Proof. Let An be defined as in the proof of lemma 8. On An we have for all t ∈ T and
i =1, . . ., n,

|(Q(t)a(t))i |=
∣∣∣∣∣

n∑
j=1

Qij(t)aj(t)

∣∣∣∣∣=
∣∣ai(t)−Yi(t)(YY(t))−1Ya(t)

∣∣
≤|ai(t)|+ ‖Yi(t)‖

∥∥(YY(t))−1
∥∥‖Ya(t)‖

≤ |ai(t)|+
√

k max
j=1,…,k

|Yij(t)|K‖Ya(t)‖.

Lemma 10
Let B ⊂ Rp be an open set, an, a : B × T → R be random functions. Suppose �̂

P→ �0 ∈ B, and

suppose there exist an open neighbourhood C ⊂ B of �0 such that an
P→ a uniformly on C × T

and a(·, t) : B → R is continuous at �0 uniformly in t ∈ T. Then an(�̂, t) P→ a(�0, t) uniformly in
t ∈ T.

Proof. For all t ∈T, |an(�̂, t) − a(�0, t)| ≤ |an(�̂, t) − a(�̂, t)|+ |a(�̂, t) − a(�0, t)|. The conti-
nuity of a shows that the second term converges to 0 uniformly on T. Since C is an open neigh-

bourhood of �0, P(�̂ ∈ C)→1 and hence the convergence of an implies |an(�̂, t)−a(�0, t)| P→
0 uniformly in t ∈ T.

Lemma 11
If ei : T → R, i ∈ N are random functions, supi=1,…,n

t∈T

|ei(t)| P→ 0 and � converges uip on T then

(assuming that the integrals exist)
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1
n

∫ t

0
e(s)T dN(s) P→0 and

1
n

∫ t

0
e(s)T dM(s) P→0 uniformly in t ∈T.

Proof. Since 〈M〉(�)= 〈 1
n

∑n
i=1(Ni(·) − ∫ ·

0 �i(s) ds)〉(�)= 1
n2

∑n
i=1

∫ �
0 �i(s) ds = 1

n

∫ �
0 �(s) ds P→ 0,

Lenglart’s inequality implies M → 0 uip on T. Therefore,

1
n

n∑
i=1

∫ t

0
|dNi(s)|= N(t)= M(t)+

∫ t

0
�(s) ds P→

∫ t

0

−⇀
� (s) ds

uniformly in t ∈ T. Hence,∣∣∣∣1n
∫ t

0
e(s)T dN(s)

∣∣∣∣≤ 1
n

n∑
i=1

∣∣∣∣
∫ t

0
ei(s) dNi(s)

∣∣∣∣≤ 1
n

n∑
i=1

∫ t

0
|dNi(s)| sup

i=1,…,n
s∈T

|ei(s)| P→0

uniformly in t ∈ T. The second statement can be shown similarly.

Lemma 12
Suppose H is a vector space over R with scalar product < ·, ·>. If y1, . . ., yk ∈ H are such that
the matrix A := (< y	, y�> )	, �=1,…,k is invertible then

Q : H →H , x �→x − (y1, . . ., yk)A−1
(
< y1, x > , . . ., < yk , x >

)T

is the orthogonal projection onto the space orthogonal to G, where G is the space spanned by
y1, . . ., yk. Furthermore, < Qx, y > =< x, Qy > =< Qx, Qy > for all x, y ∈ H.

Proof. For x ∈ H and i ∈ {1, . . ., k},

< yi , Qx >=< yi , x >−(< yi , y1 > , . . ., < yi , yk >
)

A−1
(
< y1, x > , . . ., < yk , x >

)T

=< yi , x >−< yi , x >=0.

Hence Q maps into G⊥. Clearly P : H → H , x �→ x − Qx maps into G. Since P and Q are
linear, Q is the orthogonal projection onto G⊥ (see e.g. Rudin, 1974, p. 84). The remainder
of the lemma are properties of orthogonal projections.

Appendix C. Proofs

Proof of theorem 2. First, we prove the convergence of T ∗ − T . By Taylor’s theorem,

T ∗(t)−T (t)=n1/2(�̂−�0)T 1
n

∫ t

0

(
Q(s)∇d(�0, s)

)T
dM(s)

+n1/2(�̂−�0)T 1
2

(
1
n

n∑
i=1

∫ t

0

(
n− 1

2 Q(s)∇v∇	d(�̃, s)
)

i
dMi(s)

)
v	

n
1
2 (�̂−�0),

where �̃ is between �̂ and �0. Note that �̃ depends on s, � and i.
We will show that both terms on the right-hand side converge to 0 uip on T.

n
〈

1
n

∫ t

0

(
Q(s)∇d(�0, s)

)T
dM(s)

〉
= 1

n

∫ t

0

(
Q(s)∇d(�0, s)

)T
diag(�(s))Q(s)∇d(�0, s) ds

=
∫ t

0
(Q∇d)�(Q∇d)(�0, s) ds
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which converges uip on T by lemma 8. By Lenglart’s inequality we can conclude that

1
n

∫ ·

0

(
Q(s)∇d(�0, s)

)T
dM(s)→0 uip on T.

For v, 	=1, . . ., p we have that (∇v∇	d)Y(�̃, ·) converges uip on T by lemma 10 and thus

lemma 9 implies n−1/2 supi=1,…,n
t∈T

|(Q(t)∇v∇	d(�̃, t))i | P→ 0. Hence, we can use the assumptions

together with lemma 11 to get

1
n

n∑
i=1

∫ ·

0

(
n−1/2Q(s)∇v∇	d(�̃, s)

)
i

dMi(s)→0 uip on T.

Next, we show the convergence of Ĝ∗(t) − Ĝ(t). Since

∂

∂�v

(
1
n

∫ t

0
d(�, s)TQ(s) diag(dN(s))Q(s)d(�, s)

)

= 1
n

∫ t

0
2(∇vd)(�, s)TQ(s) diag(dN(s))Q(s)d(�, s),

a Taylor approximation yields

Ĝ∗(t)− Ĝ(t)=n1/2(�̂−�0)T 1
n

∫ t

0
2n−1/2(∇d)(�̃, s)TQ(s) diag(dN(s))Q(s)d(�̃, s)

=n1/2(�̂−�0)T 1
n

n∑
i=1

∫ t

0
2
(

n−1/4Q(s)(∇d)(�̃, s)
)

i

(
n−1/4Q(s)d(�̃, s)

)
i

dNi(s)

with �̃ between �̂ and �0. Lemma 9 together with lemma 10 shows that we can use lemma 11
to get that Ĝ∗ − Ĝ converges to zero uip on T.

Proof of lemma 3. Let � ∈ B and X (�, t) := (1/n)C(�, t)+ (log n)N(t). It can be shown that
X (�, t) is concave in � ∈ B for each t ∈ T. Furthermore,

X (�, t)= 1
n

∫ t

0

(
�TZ(s)T − log(d(�, s))1T

)
dN(s)

= 1
n

∫ t

0

(
�TZ(s)T − I{d(�, s) > 0} log(d(�, s))1T

)
dN(s)

and hence for each � ∈ B, X (�, t) − A(�, t) is a local square integrable martingale, where

A(�, t) := 1
n

∫ t

0

(
�TZ(s)T − I{d(�, s)> 0} log(d(�, s))1T

)
�(s) ds.

For � ∈ B,

nB(�, t) :=n〈X (�, ·)−A(�, ·)〉(t)

= 1
n

∫ t

0

(
�TZ(s)T − I{d(�, s) > 0} log(d(�, s))1T

)
diag(�(s))

×(Z(s)�− I{d(�, s) > 0} log(d(�, s))1
)

ds

=
∫ t

0

(
�TZ�Z(s)�−2 log(d(�, s))I{d(�, s)> 0}�(s)TYZ(s)�

+ I{d(�, s) > 0} log2(d(�, s))Y(s)T�(s)
)
ds

P→
∫ t

0

(
�T−−⇀

Z�Z(s)�−2 log(
−⇀
d (�, s))�(s)T−⇀

YZ(s)�

+ log2(
−⇀
d (�, s))

−⇀
Y (s)T�(s)

)
ds
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uniformly in t ∈ T. The convergence of Z�Z is implied by that of ZZY. Since
−⇀
d is bounded

away from 0, the convergence of d implies the convergence of I{d(�, s) > 0} and log(d(�, s)).
By the above and Lenglart’s inequality (see e.g. Andersen & Gill, 1982, appendix I),

supt∈T |X (�, t) − A(�, t)| P→ 0 for all � ∈ B. Furthermore, since

A(�, t)=
∫ t

0

(
�TYZ

T
(s)�(s)− I{d(�, s) > 0} log(d(�, s))Y(s)T�(s)

)
ds

we can use assumptions (i) and (ii) to get supt∈T |A(�, t) − a(�, t)| P→ 0. Hence, supt∈T |X (�, t) −
a(�, t)| P→ 0. By Andersen & Gill (1982 Cor.II.2) this implies �̂ − �a P→ 0.

To show �̂ − �a =OP(n−1/2) we proceed as follows. Let

U (�, t) := ∂

∂�
X (�, t)= 1

n

∫ t

0
Z(s) dN(s)−

∫ t

0
d(�, s)−1Zd(�, s) dN(s),

J (�, t) :=
(

∂

∂�

)2

X (�, t)=
∫ t

0

(
d(�, s)−2Zd(�, s)⊗2 −d(�, s)−1ZdZ(�, s)

)
dN(s).

A Taylor expansion of U around �a yields

U (�, t)−U (�a, t)= J (�̃, t)(�−�a)

for some �̃ between � and �a. By definition of �̂ we have U (�̂, �)=0 and hence

−n1/2U (�a, �)= J (�̃, �)n1/2(�̂−�a).

We will show U (�a, �)=OP(n−1/2) and J (�̃, �) P→ −⇀
J (�a, �) where

−⇀
J (�, t) :=

∫ t

0

(−⇀
d (�, s)−2−⇀Zd(�, s)⊗2 −−⇀

d (�, s)−1−−⇀ZdZ(�, s)
)−⇀

Y (s)T�(s) ds.

Since we assumed
−⇀
J (�a, �) to be invertible we will get �̂ − �a =OP(n−1/2).

The convergence of J (�̂, t) is immediate from �̂
P→ �a, lemma 10 and the assumptions.

The boundedness of U (�̂, �) needs some more work. Let

V (t) := 1
n

∫ t

0
Z(s)�(s) ds −

∫ t

0
d(�a, s)−1Zd(�a, s)�(s) ds

=
∫ t

0

(
Z�(s)−d(�a, s)−1Zd(�a, s)Y(s)

)
�(s) ds

and

−⇀
V (t) :=

∫ t

0

(−⇀
Z�(s)−−⇀

d (�a, s)−1−⇀Zd(�a, s)
−⇀
Y (s)

)
�(s) ds.

By definition of �a we have
−⇀
V (�)=0. Hence,

n1/2U (�a, �)= n1/2(U (�a, �)−V (�))+ n
1
2 (V (�)−−⇀

V (�)). (5)

We show that both terms on the right-hand side are stochastically bounded. Since

〈n1/2
(
U (�a, ·)−V (·))〉(�)=

∫ �

0

(
Z�Z(s)−d(�a, s)−2Zd(�a, s)⊗2�(s)

)
ds

converges in probability, 〈n1/2
(
U (�a, ·) − V (·))〉(�) is stochastically bounded. Hence, using

Lenglart’s inequality, we can conclude that n1/2
(
U (�a, t) − V (t)

)
is stochastically bounded

uniformly in t ∈ T. The second term on the right-hand side of (5) can be dealt with as follows.

 Board of the Foundation of the Scandinavian Journal of Statistics 2005.



Scand J Statist 32 GOF tests for Aalen’s additive model 445

Since

V (�)−−⇀
V (�)=

∫ �

0

[(
ZY(s)−−⇀

ZY(s)
)

+
(

d(�a, s)−1Zd(�a, s)Y(s)−−⇀
d (�a, s)−1−⇀Zd(�a, s)

−⇀
Y (s)

)]
�(s) ds,

the assumptions imply V (�) − −⇀
V (�)=OP(n− 1

2 ).
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