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Today’s Lecture

Part I Monte Carlo Simulation

Part II Introduction to Parallel Computing
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Uniform Random Number Generation

I Basic building block of simulation:
stream of independent rv U1, U2, . . . ∼ U(0, 1)

I “True” random number generators:
I based on physical phenomena
I Example http://www.random.org/; R-package random: “The

randomness comes from atmospheric noise”
I Disadvantages of physical systems:

I cumbersome to install and run
I costly
I slow
I cannot reproduce the exact same sequence twice [verification,

debugging, comparing algorithms with the same stream]

I Pseudo Random Number Generators: Deterministic algorithms
I Example: linear congruential generators:

un =
sn
M
, sn+1 = (asn + c)modM
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General framework for Uniform RNG

(L’Ecuyer, 1994)

s s1
T

u1

G

s2
T

u2

G

s3
T

u3

G

. . .T

I s initial state (’seed’)
I S finite set of states
I T : S → S is the transition function
I U finite set of output symbols

(often {0, . . . ,m − 1} or a finite subset of [0, 1])
I G : S → U output function
I si := T (Si−1) and ui := G (si ).
I output: u1, u2, . . .
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Some Notes for Uniform RNG

I S finite =⇒ ui is periodic

I In practice: seed s often chosen by clock time as default.

I Good practice to be able to reproduce simulations:

Save the seed!

I Default random number generator in R :
Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator, ACM Transactions on Modeling and
Computer Simulation, 8, 3-30.
The ’state’ is a 624-dimensional set of 32-bit integers plus a
current position in that set.
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Quality of Random Number Generators

I “Random numbers should not be generated with a method
chosen at random” (Knuth, 1981, p.5)
Some old implementations were unreliable!

I Desirable properties of random number generators:
I Statistical uniformity and unpredictability
I Period Length
I Efficiency
I Theoretical Support
I Repeatability, portability, jumping ahead, ease of implementation

(more on this see e.g. Gentle (2003), L’Ecuyer (2004), L’Ecuyer
(2006), Knuth (1998))

I Usually you will do well with generators in modern software (e.g.
the default generators in R).
Don’t try to implement your own generator!
(unless you have very good reasons)
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Nonuniform Random Number Generation

I How to generate nonuniform random variables?

I Basic idea:

Apply transformations to a stream of iid U[0,1] random variables
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Inversion Method

I Let F be a cdf.

I Quantile function (essentially the inverse of the cdf):

F−1(u) = inf{x : F (x) ≥ u}

I If U is uniform on [0,1] then F−1(U) ∼ F . Indeed, assuming F is
strictly increasing,

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

I Only works if F−1 (or a good approximation of it) is available.
Numerical approximation if only F is available: Solve F(x)=U for
x using your favourite numerical root-finder.
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Acceptance-Rejection Method

0 5 10 15 20
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x

f(x)
Cg(x)

I target density f
I Proposal density g (easy to generate from) such that for some

C <∞:
f (x) ≤ Cg(x)∀x

I Algorithm:
1. Generate X from g .

2. With probability f (X )
Cg(X ) return X - otherwise goto 1.

I 1
C = probability of acceptance - want it to be as close to 1 as
possible.
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Further Algorithms

Examples:

I Ratio-of-Uniforms

I Use of the characteristic function

I MCMC

For many of those techniques and techniques to simulate specific
distributions see e.g. Gentle (2003).
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Evaluation of an Integral

I Want to evaluate

I :=

∫
[0,1]d

g(x)dx

I Importance for statistics: computation of expected values
(posterior means), probabilities (p-values), variances, normalising
constants, .... For example, let X be a r.v. with pdf f . Then

E(X ) =

∫
xf (x)dx and P(x ∈ A) =

∫
I(x ∈ A)f (x)dx

I Often, d is large. In a random sample, often d =sample size.
I How to solve it?

I Symbolical (programs such as Maple, Mathematica may help)
I Numerical Integration
I Quasi Monte Carlo
I Monte Carlo Integration
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Numerical Integration/Quadrature

I Main idea: approximate the function locally with simple
function/polynomials

I Advantage: good convergence rate

I Not useful for high dimensions - curse of dimensionality
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Midpoint Formula

I Basic: ∫ 1

0
f (x)dx ≈ f

(
1

2

)
(1− 0)

I Composite: apply the rule in n subintervals (similar to Riemann
Sums) R-Demo

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
n2

) if f is twice continuously differentiable.
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Trapezoidal Formula

I Basic: ∫ 1

0
f (x)dx ≈ 1

2
(f (0) + f (1))

I Composite:

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
n2

).
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Simpson’s rule

I Approximate the integrand by a quadratic function∫ 1

0
f (x)dx ≈ 1

6
[f (0) + 4f (

1

2
) + f (1)]

I Composite Simpson:

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Error: O( 1
n4
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Advanced Numerical Integration Methods

I Newton Cotes formulas (assume existence of higher derivatives)

I Adaptive methods (more points in areas where function changes
quickly)

I Unbounded integration interval: transformations
(use substitution to transform unbounded interval to bounded
interval)

R-Demo
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Curse of dimensionality - Numerical Integration in Higher
Dimensions

I :=

∫
[0,1]d

g(x)dx

I Naive approach:
I write as iterated integral

I :=

∫ 1

0

. . .

∫ 1

0

g(x)dxn . . . dx1

I use 1D scheme for each integral with, say g points .
I n = gd function evaluations needed

for d = 100 (a moderate sample size) and g = 10 (which is not a
lot):
n > estimated number of atoms in the universe!

I Suppose we use the trapezoidal rule, then the error = O( 1
n2/d

)
I More advanced schemes are not doing much better!
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Monte Carlo Integration

∫
[0,1]d

g(x)dx ≈ 1

n

n∑
i=1

g(Xi ),

where X1,X2, · · · ∼ U([0, 1]d) iid.

I SLLN:
1

n

n∑
i=1

g(Xi )→
∫
[0,1]d

g(x)dx (n→∞)

I CLT: error is bounded by OP( 1√
n

).

independent of d

I Can easily compute asymptotic confidence intervals.

I Note: Trapezoidal rule has faster convergence for d ≤ 3.
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Quasi-Monte-Carlo

I Similar to MC, but instead of random Xi : Use deterministic xi
that fill [0, 1]d evenly.
so-called “low-discrepancy sequences”.

R-package randtoolbox
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Comparison between Quasi-Monte-Carlo and Monte Carlo
- 2D

1000 Points in [0, 1]2 generated by a quasi-RNG and a Pseudo-RNG
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Comparison between Quasi-Monte-Carlo and Monte Carlo

∫
[0,1]4

(x1 + x2)(x2 + x3)2(x3 + x4)3dx

Using Monte-Carlo and Quasi-MC
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Bounds on the Quasi-MC error

I Koksma-Hlawka inequality (Niederreiter, 1992, Theorem 2.11)

‖1

n

∑
g(xi )−

∫
[0,1]d

g(x)dx‖ ≤ Vd(g)D∗n ,

where
Vd(g) is the so-called Hardy and Krause variation of g

and
Dn is the discrepancy of the points x1, . . . , xn in [0, 1]d

given by

D∗n = sup
A∈A
|#{xi ∈ A : i = 1, . . . , n} − λ(A)|

where
I λ is Lebesgue measure
I A is the set of all subrectangles of [0, 1]d of the

form
∏d

i=1[0, ai ]
d

I Many sequences have been suggested, e.g. the Halton sequence
(other sequences: Faure, Sobol, ...) with:

D∗n = O(
log(n)d−1

n
)

→ better convergence rate than MC integration!
However, it does depend on d

I Conjecture: for all sets of points Dn

D∗n ≥ O(
log(n)d−1

n
)

(Niederreiter, 1992, p.32)
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Comparison

R-Demo

The consensus in the literature seems to be:

I use numerical integration for small d

I Quasi-MC useful for medium d

I use Monte Carlo integration for large d
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Outline
Random Number Generation

Computation of Integrals

Variance Reduction Techniques
Importance Sampling
Control Variates
Further Variance Reduction Techniques
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Importance Sampling

I Main idea: Change the density we are sampling from.
I Interested in E(φ(X )) =

∫
φ(x)f (x)dx

I For any density g ,

E(φ(X )) =

∫
φ(x)

f (x)

g(x)
g(x)dx

I Thus an unbiased estimator of E(φ(X )) is

Î =
1

n

n∑
i=1

φ(Xi )
f (Xi )

g(Xi )
,

where X1, . . . ,Xn ∼ g iid.
I How to choose g?

I Suppose g ∝ φf then Var(Î ) = 0.
However, the corresponding normalizing constant is E(φ(X )), the
quantity we want to estimate!

I A lot of theoretical work is based on large deviation theory.
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Importance sampling - Comments

I Importance sampling can greatly reduce the variance for
estimating the probability of rare events, i.e. φ(x) = I(x ∈ A)
and E(φ(X )) = P(X ∈ A) small.

I It is not just useful for variance reduction - it can also be very
useful to generate random variables.

I Be careful with support/tails!
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Control Variates

I Interested in I = EX
I Suppose we can also observe Y and know EY .
I Consider T = X + a(Y − E(Y ))
I Then ET = I and

VarT = VarX + 2aCov(X ,Y ) + a2 VarY

Minimized for a = −Cov(X ,Y )
VarY .

I usually, a not known → estimate
I For Monte Carlo sampling:

I generate iid sample (X1,Y1), . . . , (Xn,Yn)
I estimate Cov(X ,Y ), VarY based on this sample → â
I Î = 1

n

∑n
i=1[Xi + â(Yi − E(Y ))]

I Î can be computed via standard regression analysis.
Hence the term“regression-adjusted control variates”.

I Can be easily generalised to several control variates.
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Random Number Generation Computation of Integrals Variance Reduction Techniques

Further Techniques

I If density symmetric around point: Antithetic Sampling
Use X and −X if symmetric around 0.

I Conditional Monte Carlo
Evaluate parts explicitly

I Common Random Numbers
For comparing two procedures - use the same sequence of
random numbers.

I Stratification
I Divide sample space Ω into strata Ω1, . . . ,Ωs

I In each strata, generate Ri replicates conditional on Ωi and
obtain an estimates Îi

I Combine using the law of total probability:

Î = p1 Î1 + · · ·+ ps Îs

I Need to know pi = P(Ωi ) for all i
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Part II

Parallel Computing

Introduction

Parallel RNG

Practical use of parallel computing (R)
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Embarrassingly Parallel
Speedup
Communication between Processes

Parallel RNG

Practical use of parallel computing (R)

Axel Gandy Parallel Computing 33



Introduction Parallel RNG Practical use of parallel computing (R)

Moore’s Law

(Source: Wikipedia, Creative Commons Attribution ShareAlike 3.0 License)
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Growth of Data Storage
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I Not only the computer speed but also the data size is increasing
exponentially!

I The increase in the available storage is at least as fast as the
increase in computing power.
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Introduction

I Recently: Less increase in CPU clock speed

I → multi core CPUs are available (eight cores readily available -
80 cores in labs)

I → software needs to be adapted to exploit this

I Traditional computing:
Problem is broken into small steps that are executed sequentially

I Parallel computing:
Steps are being executed in parallel
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von Neumann Architecture

I CPU executes a stored program that specifies a sequence of read
and write operations on the memory.

I Memory is used to store both program and data instructions

I Program instructions are coded data which tell the computer to
do something

I Data is simply information to be used by the program

I A central processing unit (CPU) gets instructions and/or data
from memory, decodes the instructions and then sequentially
performs them.
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Different Architectures

I Multicore computing

I Symmetric multiprocessing
I Distributed Computing

I Cluster computing
I Massive Parallel processor
I Grid Computing

List of top 500 supercomputers at http://www.top500.org/
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Introduction Parallel RNG Practical use of parallel computing (R)

Flynn’s taxonomy
Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD
Examples:

I SIMD: GPUs
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Memory Architectures of Parallel Computers

I Traditional System
CPU

Memory

I Shared Memory System Memory

CPU CPU CPU

I Distributed Memory System

CPU

Memory

CPU

Memory

CPU

Memory

I Distributed Shared Memory System

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Axel Gandy Parallel Computing 40
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Embarrassingly Parallel Computations

Task can be divided into parts that can be executed separatedly.
Examples:

I Monte Carlo Integration

I Bootstrap

I Cross-Validation

Note: MCMC methods do not fall (easily) into this category.
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Speedup

Ideally: computational time reduced linearly in the number of CPUs

I Suppose only a fraction p of the
total tasks can be parallelized.

I Supposing we have n parallel
CPUs, the speedup is

1

(1− p) + p/n
(Amdahl’s Law)

→ no infinite speedup possible.

Example

p = 90%, maximum speed up
by a factor of 10.
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Communication between processes

I Forking

I Threading

I OpenMP (good for multicore machines)
shared memory multiprocessing

I PVM (Parallel Virtual Machine)

I MPI (Message Passing Interface; de facto standard for large
scale parallel computations)

I For “Big Data”: Hadoop and related approaches.

How to divide tasks? e.g. Master/Slave concept
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Outline
Introduction

Parallel RNG
Intro
General Approach
Implementations in R

Practical use of parallel computing (R)
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Parallel Random Number Generation

Problems with RNG on parallel computers

I Cannot use identical streams

I Sharing a single stream: a lot of overhead.

I Starting from different seeds: danger of overlapping streams
(in particular if seeding is not sophisticated or simulation is large)

I Need independent streams on each processor...
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Parallel Random Number Generation - sketch of general
approach
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Packages in R for Parallen random Number Generation

rsprng Interface to the scalable parallel random number
generators library (SPRNG)
http://sprng.cs.fsu.edu/

rlecuyer Essentially starts with one random stream and
partitions it into long substreams by jumping ahead.
L’Ecuyer et al. (2002)
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Outline
Introduction

Parallel RNG

Practical use of parallel computing (R)
Things to do before considering parallelisation.
Packages
Some other Packages
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Profile

I Determine what part of the programme uses most time with a
profiler

I Improve the important parts (usually the innermost loop)

I R has a built-in profiler (see Rprof, Rprof.summary, package
profr)
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Use Vectorization instead of Loops

> a <- rnorm(1e7);

> system.time({x <- 0; for (i in 1:length(a)) x <- x+a[i]})[3]

elapsed

8.5

> system.time(sum(a))[3]

elapsed

0.02
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Just in time compilation - the compiler package I

I compiler package: can pre-compile R code into “Byte Code”

I R core - the base and recommended packages are now
byte-compiled by default.

> library(compiler)

> f <- function(i){j <- 0;for (i in 1:10000) j <- j+i;j}

> system.time(replicate(1000,f()))

user system elapsed

4.98 0.00 4.98

> fc <- cmpfun(f)

> system.time(replicate(1000,fc()))

user system elapsed

0.44 0.00 0.43
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Just in time compilation - the compiler package II
This is an extreme example; the speedup will usually be not as big.
Can enable this functionality automatically via

require(compiler)

enableJIT(3)

I Other JIT implementation: RA; Not just a package - central
parts are reimplemented.
(http://www.milbo.users.sonic.net/ra/); need to install
Ra instead of R (Ra has not been updated for some time).

I Bill Venables (on R help archive):
“if you really want to write R code as you might C code, then jit
can help make it practical in terms of time. On the other hand, if
you want to write R code using as much of the inbuilt operators
as you have, then you can possibly still do things better.”
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Use Compiled Code

I R is an interpreted language.

I Can include C, C++ and Fortran code.

I Can dramaticallly speed up computationally intensive parts
(a factor of 100 is possible)

I No speedup if the computationally part is a vector/matrix
operation.

I Downside: decreased portability, longer programming time

I Helpful libraries: Rcpp
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R-package: parallel
I Part of R core since R version 2.14.

I Mostly for “embarassingly parallel” computations

I Extends the “apply”-style function to a cluster of machines

> detectCores()

[1] 4

> cl <- makeCluster(4)

> f <- function(i) mean(replicate(10000,mean(rnorm(10000,mean=i))))

> parSapply(cl,1:4,FUN=f)

[1] 1.000165 2.000036 3.000067 3.999995

> system.time(parSapply(cl,1:4,FUN=f))

user system elapsed

0.00 0.00 16.24

> system.time(sapply(1:4,FUN=f))

user system elapsed

44.32 0.01 44.63

> stopCluster(cl)
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Random number generator

parallel RNG is being set up automatically

> cl<-makeCluster(2)

> parLapply(cl,1:2,function(i) rnorm(3))

[[1]]

[1] -0.1490175 1.4870953 -0.4753602

[[2]]

[1] -1.139051 0.202475 1.184057

> stopCluster(cl)
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Rmpi
For more complicated parallel algorithms that are not embarassingly
parallel.
Tutorial under http://math.acadiau.ca/ACMMaC/Rmpi/
Hello world from this tutorial

# Load the R MPI package if it is not already loaded.

if (!is.loaded("mpi_initialize")) {

library("Rmpi") }

# Spawn as many slaves as possible

mpi.spawn.Rslaves()

# In case R exits unexpectedly, have it automatically clean up

# resources taken up by Rmpi (slaves, memory, etc...)

.Last <- function(){

if (is.loaded("mpi_initialize")){

if (mpi.comm.size(1) > 0){

print("Please use mpi.close.Rslaves() to close slaves.")

mpi.close.Rslaves()

}

print("Please use mpi.quit() to quit R")

.Call("mpi_finalize") } }

# Tell all slaves to return a message identifying themselves

mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))

# Tell all slaves to close down, and exit the program

mpi.close.Rslaves()

mpi.quit()

(not able to install under win from CRAN - install from
http://www.stats.uwo.ca/faculty/yu/Rmpi/)
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Some other Packages

multicore Use of parallel computing on a single machine via fork
(Unix, MacOS) - very fast and easy to use.

GridR http:

//cran.r-project.org/web/packages/GridR/

Wegener et al. (2009, Future Generation Computer
Systems)

rparallel http://www.rparallel.org/
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GPUs

I graphical processing units - in graphics cards

I very good at parallel processing

I need to taylor to specific GPU.

I Packages in R:

gputools several basic routines.
cudaBayesreg Bayesian multilevel modeling for fMRI.
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Further Reading

I A tutorial on Parallel Computing:
https://computing.llnl.gov/tutorials/parallel_comp/

I High Performance Computing task view on CRAN
http://cran.r-project.org/web/views/

HighPerformanceComputing.html

I A talk on high performance comuting with R: http://dirk.
eddelbuettel.com/papers/useR2010hpcTutorial.pdf
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Topics in the coming lectures:

I Optimisation

I MCMC methods

I Bootstrap

I Particle Filtering
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