
BioFluids Lecture 3: Flagellar swimming – resistive-force theory.

See the course Webpage: http://www.ma.ic.ac.uk/∼ajm8/BioFluids

Today we analyse how motion of a long, thin flagellum can propel an organism such as
Chlamydomonas (see Pictures file) at low Reynolds number.
Low Reynolds number flows have several nice properties: they are unique, stable,

linear, time-reversible and establish themselves instantaneously. For example, the steady
motion of a solid sphere of radius a with speed U gives rise to the flow in r > a
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in terms of spherical polar coordinates (r, θ, η) aligned with the swimming direction. The
total drag acting on the sphere can be shown to be

F = 6πaμU. (3.2)

We can interpret the motion in (3.1) as the sum of two flow fields, a potential flow scaling as
r−3 and the Stokeslet which scales as r−1. The former is a source/sink dipole, describing
the fluid being pushed away from the front of the sphere and reappearing at the rear. The
Stokeslet is the flow resulting from a point force in the flow direction of strength Fδ(r) at
the origin. From (3.2) and (3.1), the Stokeslet velocity is
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We can attempt to describe the motion of a general body by distributions of dipole and
Stokeslet singularities over its surface.

More useful when considering flagellum driven swimming is the motion of a long thin
cylinder, of radius a. Physically, we might regard the effect of a thin cylinder moving
through a fluid as the combined effect of a uniform distribution of point forces. Let us
consider a uniform distribution of Stokeslets on the z-axis between z = −b and z = c
each of strength f = F/(b+ c) moving with uniform velocity in the z-direction. Using the
linearity, we can superpose the velocity fields from all of the Stokeslets. The z-component
of velocity a distance a from the z axis at z = 0 is therefore
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expressing r and θ in terms of z. Performing the integration, and evaluating it on the
cylinder surface and assuming a� b, c we obtain
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where the suffix T denotes motion parallel to the cylinder axis. An inconvenient logarithm
appears, which prevents us from considering an infinite cylinder, or one of zero radius.
Moreover, we see that the velocity is not exactly constant. As we vary b and c keeping the
length (b+ c) constant, u varies slightly. However if a is very small, to leading order this
represents a cylinder moving with constant speed parallel to its axis. We can therefore
define a tangential resistance coefficient,

KT =
4πμ

−1 + log 4bc
a2

, (3.6)

so that fT = KTUT for motion with speed U parallel to the cylinder axis.

Similarly, let us try to model a cylinder moving normal to its axis. This time, we must
also include some of the irrotational dipoles. A similar calculation then gives the flow
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where N denotes motion normal to the cylinder axis. Once more, as a is small, we deduce
that a rigid cylinder moving normally to its axis can be approximately represented by
a uniform distribution of Stokeslets and dipoles. Furthermore, we can define a normal
resistance coefficient, fN = KNUN where

KN =
8πμ
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. (3.8)

We note that the resistance to normal motion is approximately twice the resistance to
tangential motion if a is small enough. Because of the linearity of the Stokes equations,
motion in an oblique direction can be considered as a suitable sum of the normal and
horizontal flows.

Resistive Force Theory

Let us now consider a thin flagellum, which undergoes prescribed motion. We would
like to calculate the force exerted on the fluid; if this is non-zero on average, then the
flagellum will have net movement, and will swim. Furthermore, if it is attached to an inert
head, the entire organism will swim, but at a lower speed than would the flagellum by
itself.

A useful approximation, known as resistive force theory, was introduced by Gray
and Hancock. They argued that as the flagellum undulates, provided its radius of curvature
is large compared to its diameter, the forces corresponding to the normal and tangential
motion would be approximately given by the local flagellum velocity and the above co-
efficients KN and KT for straight cylinders. Thus approximately the force exerted by a
flagellar segment is

F ' KNuN +KTuT , (3.9)

where uN is the normal velocity component and uT the tangential component. The total
force can then be obtained by integrating over the flagellum.
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BioFluids Lecture 4: Propulsion by travelling waves on a flagellum

Consider a flagellum with total length L. At time t = 0, we define its position by

r = (X(s), Y (s), Z(s)), 0 < s < L, (3.10)

where s denotes arclength along the flagellum from one end. The unit tangent vector to
this curve is then

T̂ =
dr

ds
= (X ′, Y ′, Z ′) where X ′2 + Y ′2 + Z ′2 = 1. (3.11)

Observation shows that sending travelling waves down the flagellum is a popular way to
swim. So we assume that the shape is periodic with period Λ down its length. We assume
that the flagellum oscillates about the x-axis, and that swimming is in the x-direction. We
have then

Y (s+ Λ) = Y (s), Z(s+ Λ) = Z(s) and X(s+ Λ) = X(s) + λ. (3.12)

Here λ is a projection onto the x-axis of the wave-length; we write

λ = αΛ where 0 < α 6 1, (3.13)

so that α is the proportion by which the flagellum contracts as it wiggles around.

We further assume that the solid flagellum is inextensible and incompressible. This
means that its tangential velocity must be a constant, say Q. With respect to a frame
moving in the x-direction with the wave speed V , where for consistency we must have
V = αQ, the material particles in the flagellum appear to be at rest, so that

r = (X(s−Qt), Y (s−Qt), Z(x−Qt)) . (3.14)

Now suppose the flagellum swims with velocity (−U, 0, 0), in the opposite direction to the
wave. Each part of the flagellum then moves relative to the fluid with velocity

u = (V − U, 0, 0)−QT̂ = (V − U) sin θ N̂+ [(V − U) cos θ −Q] T̂ (3.15)

where θ is the angle between the x-axis and the tangent, so that cos θ = X ′(s−Qt).

Now that we have the normal and tangential components we can use resistive force
theory, claiming that the local resistance to the velocity UNN̂+UT T̂ isKNUNN̂+KTUT T̂.
We then take the component in the x-direction and integrate along the body to obtain the
total force on the fluid

P =
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]
ds. (3.16)

Now ∫ L
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so that β is the mean square cosine of the body shape. Clearly 0 < β 6 1. In fact Schwarz’
inequality states β > α2. Equation (3.16) can then be written

P = KTL[(V − U)β − V ] +KNL(V − U)(1− β). (3.18)

Now if we have included everything in the problem, the flagellum should be in equilibrium,
with no net force acting, i.e. P = 0. Alternatively, the force P may be used to propel an
inert head with the swimming velocity U . We assume the drag force for the head motion
is independent of the flagellar motion, and for convenience we write this drag as KNLUδ,
so that

δ =
resistance to forward motion of head

resistance to sideways motion of entire flagellum
. (3.19)

Equating the head drag to the extra propulsive force P ,

P = KNLUδ,

and solving for the swimming speed U gives

U

V
=
(1− β)(1− ρ)
1− β(1− ρ) + δ

= 1−
ρ+ δ

1− β(1− ρ) + δ
where ρ =

KT

KN
. (3.20)

Note no swimming occurs (U = 0) if ρ = 1, so the differential resistance is crucial to the
swimming procedure.

If ρ > 1, U < 0 and the swimming is in the same sense as the wave, but for Stokes
flow ρ < 1 and the swimming is in the opposite sense. Obviously β = 1 = α means the
flagellum isn’t moving at all. In (3.20) U increases as β decreases towards zero, so we can
say

U <
V (1− ρ)
1 + δ

. (3.21)

Of course if the flagellum swims at all, it can propel an arbitrarily large head at a slow
speed (until its energy source runs out.)

Gray and Hancock obtained reasonable agreement with observations assuming a value
ρ = 0.5. Unfortunately, the more realistic value of ρ = 0.7 gives worse results. Lighthill
suggested that the proximity of the sperms in their experiment to a solid boundary, with
resultant interactions with images, should arguably lead to a lower value of ρ.
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