
BioFluids Lecture 5: Swimming of a flapping sheet or array of cilia.

See the course Webpage: http://www.ma.ic.ac.uk/∼ajm8/BioFluids

Many organisms employ large numbers of flagella (which we now call cilia) to generate
forward motion. The essence of ciliar swimming is that rather than have each flagellum
perform a travelling wave, a wave may be generated by suitable time lapses between cilia
undergoing a simple, identical motion. We will assume each cilium moves periodically.
Typically, this motion consists of a wide sweep at some distance from the boundary, which
we call the swimming stroke, followed by a recovery stroke with the cilium close to the
boundary. This may be likened to the technique of a child on a swing, although the
mechanical processes are very different. If the swimming stroke is in the same direction as
the travelling wave the motion is called simplectic, whereas if it is in the opposite direction
it is called antiplectic.

Each cilium might swim by itself if its motion is irreversible (remember the scallop
theorem.) However, the essence of ciliar swimming is that a large number of these motions
are superposed in a travelling wave-like manner. This kind of ciliar motion is also used
inside the body to transport mucus linings, for example in the lungs; there the fluid may
well be non-Newtonian, however.

We consider an organism with a planar surface y = 0 which is coated with an array of
cilia. We shall assume the cilia undergo a z-independent, sinusoidal travelling wave motion
in the x-direction. Thus as they wave around, the tip of the cilium tethered at (x0, 0) is
at (xs, ys) where

xs = x0 + a cos(ξ − φ), ys = y0 + b sin ξ where ξ = kx0 − ωt. (5.1)

Here x0 is a variable essentially labelling the cilia, whereas y0 is an average extension which
we will take to be the same for each cilium. We could easily extend the theory to include
z-dependence, but that would increase the algebra. Note that we may take a and b to be
positive without loss of generality.

We will assume k > 0 and ω > 0, so that the wave travels to the right with phase speed
k/ω. We have included a phase factor φ to allow for various swimming modes. When the
cilium is fully extended (ξ = 1

2π) the x-component of its tip velocity is ∂xs/∂t = aω cosφ,
so that the motion is simplectic for |φ| < 1

2π.

Eliminating t from(5.1), we find that the orbit of the cilium at position x0 is

[
b(xs − x0)− a sinφ(ys − y0)

]2
+ a2 cos2 φ(ys − y0)

2 = a2b2 cos2 φ (5.2)

so that the tip of each cilium (xs, ys) describes an ellipse.

Now the fluid is constrained to have the cilium velocity at each point (xs, ys). So if
the density of cilia is high enough we expect it will be reasonable to model the array of
cilia as a rigid sheet with shape (xs, ys). This sheet is in some sense the envelope of the
ciliar motion. At each time instant t, the sheet shape is given parametrically in terms of
x0. Note that the sheet so defined will not in general be inextensible as we ensured for the
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single flagellum. However, there is no reason why it should be, as it models a discrete set
of cilia.

We therefore consider the Stokes flow above the boundary given by (5.1). On this
boundary, the velocity must be given by

u =

(
∂xs

∂t
,
∂ys

∂t
, 0

)

= (aω sin(ξ − φ), −bω cos ξ, 0) on x = xs, y = ys. (5.3)

Note that x appears implicitly in this equation through ξ. Combining (5.1) and (5.3) will
generate terms like sinnξ for all integers n.

We seek the solution to the Stokes equations in y > ys satisfying (5.3). As we have a
two-dimensional geometry, we can use a streamfunction ψ with

u = ∇∧ (0, 0, ψ) = (ψy, −ψx, 0) (5.4)

so that the Stokes equations reduce to the biharmonic equation for ψ

∇p = μ∇2u =⇒ ∇2(∇2ψ) = 0. (5.5)

We replace x and y with the scaled variables,

ξ = kx− ωt, η = ky, =⇒ ψηηηη + 2ψηηξξ + ψξξξξ = 0. (5.6)

We shall assume the amplitudes a and b of the wave motion are small (and of similar
order) compared to the wavelength, and seek a power series solution in ka, kb. We will
also need a boundary condition as y → ∞. As we are using a frame fixed in the body, if
the organism swims the fluid at infinity will appear to move in the opposite direction, so
we expect

k
∂ψ

∂η
≡
∂ψ

∂y
→ U,

∂ψ

∂ξ
≡
∂ψ

∂x
→ 0 as y, η →∞, (5.7)

where positive U indicates the organism swims in the negative x-direction.

If we Fourier analyse in the x-direction, an appropriate set of separable solutions to
the biharmonic equation ∇4ψ = 0 are

ψ =
∞∑

n=0

Vn ≡
∞∑

n=0

[(An +Bnη) sinnξ + (Cn +Dnη) cosnξ] e
−nη , (5.8)

We now move the boundary conditions from the point (xs, ys) to (x, y0) using Taylor
series:

ψx(xs, ys) = ψx + (xs − x)ψxx + (ys − y0)ψxy + 12 (xs − x)
2ψxxx+

(xs − x)(ys − y0)ψxxy + 12 (ys − y0)
2ψxyy + . . .

(5.9)

where all derivatives on the RHS are evaluated at (x, y0). In terms of ξ and η, using (5.1),
(5.4) and (5.3), this becomes (dropping the zero suffix on (ξ)

ωb

k
cos ξ = ψξ(ξs, ηs) = ψξ + ka cos(ξ − φ)ψξξ + kb sin ξψξη

+ 12k
2
[
ψξξξ a

2 cos2(ξ − φ) + ψξξη 2ab cos(ξ − φ) sin ξ + (b
2 sin2 ξ)ψξηη

]
+O(k3)

(5.10)

2



where the RHS is evaluated at η = 0. A similar expansion for ψy leads to the other
boundary condition

aω

k
sin(ξ − φ) = ψη(ξs, ηs) = ψη + ka cos(ξ − φ)ψηξ + kb sin ξψηη

+ 12k
2
[
ψηξξ a

2 cos2(ξ − φ) + ψηξη 2ab cos(ξ − φ) sin ξ + b
2(sin2 ξ)ψηηη

]
+O(k3)

(5.11)

We now expand ψ as a power series in k

ψ =
ω

k
ψ1(ξ, η) + ωψ2(ξ, η) + . . . (5.12)

We can choose suitable coefficients A1, B1, C1, D1 in (5.7) so that

ψ1ξ(ξ, 0) = b cos ξ, ψ1η = a sin(ξ − φ), (5.13)

and we find the leading order solution

ψ1 = (b+ bη)e
−η sin ξ − aη sin(ξ − φ)e−η. (5.14)

As η → ∞, we get ψη → 0 and we get no swimming. At the next order though, we hope
to get terms in cos2 ξ and sin2 ξ which have a non-zero mean.
At O(k2), (5.11) and (5.12) require that on η = 0,

ψ2ξ = −a cos(ξ − φ)ψ1ξξ − b sin ξψ1ξη, ψ2η = −a cos(ξ − φ)ψ1ηξ − b sin ξψ1ηη, (5.15)

We can now substitute in from (5.14) and we find that

ψ2ξ = 0, ψ2η = −a
2 cos2(ξ − η) + b2 sin2 ξ + 2ab sin ξ sin(ξ − φ). (5.16)

We can once more choose solutions of the form (5.11) and arrange for suitable constants
to satisfy (5.16). The swimming speed will depend on the ‘n = 0’ term, which we can find
directly from (5.16) by taking the average over ξ. After some algebra we obtain

ψ2 = Uη − 12ηe
−2η [2γ(b+ β) sin 2ξ + (b+ β + γ)(b+ β − γ) cos(2ξ)] . (5.17)

where we have written β = a cosφ, γ = a sinφ and at this order we get a swim speed

U = 1
2ωk(b

2 + 2ab cosφ− a2). (5.18)

This can be positive or negative according to the values of the stroke parameters a, b and
φ, in a non-obvious manner. If a� b, so that the motion is mainly up and down, we would
expect the collection of cilia to behave a bit like a single wave-carrying flagellum, and hence
swim in the opposite direction to the wave; this is confirmed. Conversely, however, if a� b
the cilial motion is predominantly lateral, and the swimming is in the opposite direction
to the wave.
We could continue to next order in k, which, while straightforward, is a little messy

compared to the elegant formula (5.18). At the very least, we can first seek the values of
a, b and φ which lead to efficient swimming, and predict in which direction the organism
will move.
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Bacterial Power – Rate of working of the ciliar sheet

It is a simple matter to derive the pressure field associated with the flow using the
x-component of Stokes equations and (5.14),

∂p

∂x
= μ∇2

(
∂ψ

∂y

)

=⇒ p = −2μωke−η[b cos ξ + a cos(ξ − φ)] +O(k2). (5.19)

We can then calculate the total force on the cilia-sheet, F, and the rate of working (per
unit area) of the organism, W , by integrating over the sheet σijnj and uiσijnj respectively,
where the stress tensor

σij =

(
−p+ 2μψxy μ(ψyy − ψxx)
μ(ψyy − ψxx) −p− 2μψxy

)

ij

, (5.20)

and averaging over a time-period. This gives the result

W = μω2k(a2 + b2) +O(k2). (5.21)

Optimal Stokes Strokes: Swimming Efficiency

We can now pose a simple optimization problem: What values of the stroke parameters
a, b and φ given a maximum swim speed |U | for given effort W? If we write a = r cos θ,
b = r sin θ then keeping r fixed ensures constant W . Then

U ∝ [sin2 θ + 2 sin θ cos θ cosφ− cos2 θ] ∝ [− cos 2θ + cosφ sin 2θ]. (5.22)

Setting the partial derivatives of U with respect to θ and φ to zero, we have

sinφ sin 2θ = 0, sin 2θ + cosφ cos 2θ = 0 (5.23)

so that either (1) sin 2θ = 0 and cosφ = 0, or (2) φ = 0 and tan 2θ = −1, or (3) φ = π and
tan 2θ = +1. This translates into the cases

(1) a = 0 or b = 0 and U = ± 12kωr
2 (normal or lateral motion only, either swim direction)

(2) φ = 0 and a = b(
√
2− 1) so that U = 1√

2
kωr2 (simplectic, opposite to wave).

(3) φ = π and b = a(
√
2− 1) and U = − 1√

2
kωr2 (antiplectic, same direction as wave.)

We see that combining lateral and normal cilial displacements can increase the swim-
ming speed by a factor of

√
2 (or alternatively reduce the power required to travel at a

given speed by that factor.) The simplectic and antiplectic modes have the same effi-
ciency; indeed, the organisms Opalina and Paramecium arguably and approximately use
the simplectic and antiplectic cases (2) and (3) respectively.
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BioFluids Lecture 6: Swimming at higher Reynolds number

We have shown that an organism covered in a sheet of cilia, undulating about y = 0, can
swim at low Reynolds number R� 1 by adopting the travelling wave shape

xs = x+ a cos(ξ − φ), ys = y0 + b sin ξ where ξ = kx− ωt. (6.1)

assuming ka� 1, kb� 1. We show now that in this long wave limit, we can also include
inertia in the theory, provided also aω, bω � νk where ν is the kinematic viscosity. Non-
dimensionalising space, time and the streamfunction ψ with respect to k−1, ω−1 and ω/k2,
the two-dimensional vorticity equation is

R(Ωt + u ∙ ∇Ω) = ∇
2Ω where Ω = −∇2ψ, (6.2)

where we have defined a suitable Reynolds number

R =
ω

νk2
. (6.3)

If we seek solutions depending only on ξ = kx− ωt and η = ky, we have

R

[

−
∂

∂ξ
+ ψη

∂

∂ξ
− ψξ

∂

∂η

]

∇2ψ = ∇4ψ. (6.4)

We now expand, as before (note ψ1 and ψ2 have dimensions length and (length)
2,)

ψ = kψ1(ξ, η) + k
2ψ2(ξ, η). (6.5)

At leading order, inertia only enters in the time derivative and not the nonlinearity,

Lψ1 ≡ ∇
4ψ1 +R

∂

∂ξ
∇2ψ1 = 0, (6.6)

which is to be solved subject to the boundary conditions (see 5.10)

ψ1ξ(ξ, 0) = b cos ξ, ψ1η = a sin(ξ − φ), (6.7)

If we seek a solution ∝ eiξ, so that ψ′′′′1 + (iR− 2)ψ
′′
1 + (1− iR)ψ1 = 0, we find

ψ1 = <e
[(
Ae−η +Be−λη

)
eiξ
]
, (6.8)

where <e denotes the real part and

λ =
√
1− iR, A =

(λ+ 1)

R
(λb+ ae−iφ), B = −

(λ+ 1)

R
(b+ ae−iφ). (6.9)

We note that the boundary layer behaviour we associate with high R already manifests
itself in one of the exponentials in (6.8).
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At next order, we begin to get quadratic interactions,

Lψ2 = R

[

ψ1η
∂

∂ξ
∇2ψ1 − ψ1ξ

∂

∂η
∇2ψ1

]

. (6.10)

The boundary conditions on η = 0 are given by (6.8) substituted into (5.12).

However, as we are mainly interested in the mean swimming speed, it is easier to
average the equations over time (or equivalently over ξ) before solution. We use the fact
that if p = <e(Peiωt) and q = <e(Qeiωt) then the time average of pq is 12<e(PQ

∗), where
the ∗ denotes a complex conjugate. We take the average of (6.10) with (6.8) to obtain

ψηηηη = −
1
2R
2 <e

[
AB∗(1 + λ∗)e−(1+λ

∗)η + |B|2(λ+ λ∗)e−(λ+λ
∗)η
]
, (6.11)

where ψ(η) is the mean of ψ2(ξ, η) over a wave period. Equation (6.11) can be integrated
four times. At infinity we impose ψ ∼ Uη where U is to be found. The boundary condition
on the plate come from averaging (6.8) substituted into (5.12).

ψη(0) =
1
2<e

[
λb2 + (λ+ 1)abe−iφ − a2

]
. (6.12)

We arrive with the result that

ψ(η) = Uη − 12R
2<e

[
AB∗(1 + λ∗)−3e−(1+λ

∗)η + |B|2(λ+ λ∗)−3e−(λ+λ
∗)η
]

(6.13)

where the swim speed U is given by

U = 1
2<e

[
b2λ+ (λ+ 1)abe−iφ − a2 −R2

(
AB∗(1 + λ∗)−2 + (λ+ λ∗)−2|B|2

)]
. (6.14)

Setting R = 0, we recover the low Reynolds number swim speed we found earlier. We can
now investigate the effect on U of varying R as well as the gait parameters a, b and φ. The
first correction to U for small R is 14Rab sinφ. We look at some special cases. See figure.

If we set a = 0, then after some algebra we find

U = 1
4b
2

[

1 +
1

F (R)

]

where F (R) =

[
1 +

√
(1 +R2)

2

]1/2

. (6.15)

The function 1/F (R) decreases from 1 to 0 as the Reynolds number increases. The corre-
sponding dimensional swim speed Udim decreases from

1
2b
2kω to 14b

2kω.

We can also evaluate the swim speed easily when b = 0. We then find that the
dimensional swim speed is

Udim = − 12a
2kω

(
3

2
−

1

2F (R)

)

. (6.16)

This time, the speed increases as R increases from 1
2a
2kω to 34a

2kω (in the opposite
direction). We can also work out the rate of working in this case, generalising (5.18). We
find that when either a = 0 or b = 0,

W = 1
2ω
2k2(a2 + b2)(1 + F (R)). (6.17)

This increases as
√
R for moderately large R, so that in some sense it gets harder to swim

by this mechanism as the Reynolds number increases.

It is rare to be able to find a flow for all values of R; of course we have only done so
in the limit kR→ 0. We now begin a more general discussion of swimming at high R.
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