Civ.Eng. 2 Mathematics: Grad, Div and Curl
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A function F which associates a vector value F(r) = F(z,y, 2) = Fi(r)i+ F2(r)j+ F5(r)k with every position
vector r = xi+yj+ 2k is said to be a VECTOR FIELD, e.g. velocity of a fluid.

Recall if f(r) is a scalar field, then
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;.9 + k2 is a VECTOR OPERATOR, V : scalar field — vector field.
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Now introduce
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which is the scalar operator we met before when finding directional derivatives; i.e.
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Similarly, we introduce
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The equivalent notation curl F = V A F is sometimes used.
Note that V x F Z#F x V, which is a vector operator; i.e.
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Therefore we have that

grad : scalar field — vector field
div : vector field — scalar field
curl : vector field — vector field

RULES: For arbitrary scalar fields f(r), g(r) and vector fields F(r), G(r); then we have that
(1) = V({f+9)=(Vf)+(Vg).

2 = V- E+G)=(V-E)+(V:-G).

B) = VxE+G)=(VxE)+(VxG).

(2) and (1) =
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Similarly (3) and (1) =
x (fE)=(Vf) x E + f(VxE).
We introduce the LAPLACIAN operator V2 : scalar field — scalar field, defined by
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It is simple matter to show using the definitions (1), (2) and (3) that

Vx(Vf)=0 and V- (VxE)=0.

RECALL: Conservative Vector Fields and Path Independence
Given a vector field F(r) = F1(r)i+ Fa(r)j + F3(r)k, if there exists a ¢(r) satisfying
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that is, / F - dr depends only on the start point A and the end point B, NOT on the particular path
Ca-B

C joining A to B. We showed that a ¢ satisfying (4a) exists, and hence that (4b) holds, if and only if F(r)
satisfies the 3 conditions
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Such an F is called CONSERVATIVE with the corresponding ¢ being the POTENTIAL of F.
In terms of grad and curl, (5) =V X F =0 and (4a) = F = V¢ . Therefore we have that
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| F conservative <= VxF=0 <= F=V¢ forsome¢p < (4b).




