
The Saffman-Taylor instability for a planar interface

Question 2 on Problem sheet 1 is known as the Saffman-Taylor instability.
As well as for flow through a porous medium as discussed in the question,
it also occurs in Hele-Shaw cells, when viscous fluid flows in a thin gap
between two planar walls. In either case, the velocity u(x, y) is given by

u = ∇φ and φ = −p/σ, (1)

for some constant σ where p is the fluid pressure. We analyse here the fin-
gering instability which is observed when a less-viscous fluid advances under
a pressure gradient into a more viscous fluid. For simplicity suppose that
one of the fluids is dynamically negligible, so that φ = 0 and p = p∞ in one
fluid. We will however allow for surface tension between the two fluids. Let
y < V t be filled with water and y > V t with air.

Basic state

Suppose first that the interface at position y = V t is planar. Then the basic
state is

Water Air

φ0 = V y + const

p0 = −σV (y − V t) + p∞ p = p∞

Now imagine that the interface suffers an infinitesimal perturbation having
wave number k and amplitude ε. We anticipate that this perturbation will
grow or decay exponentially in time, and check this assumption later. In
that case the position of the interface becomes

y = V t+ εeikx+st where k > 0 (2),

where ε is arbitrarily small. At leading order in ε, all the perturbation
quantities inherit this dependence on y and t, so that the velocity potential
in the water becomes

φ = φ0 + εf(y)eikx+st.

Now ∇2φ = 0, and thus the solution that decays as y → −∞ is

φ = V y + const+ εAeikx+st+k(y−V t), (3)
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for some constant A. The corresponding pressure is

p = p0 + p1 where p1 = −σεAeikx+st+k(y−V t). (4)

We therefore have:

Water Air

φ = φ0 + φ1

p = p0 + p1 p = p∞

Our aim is now to find s.
If a surface tension γ acts between the fluids then the interface curva-

ture at leading order is just ∂2y/∂x2 so that

[p] = γ∂2y/∂x2 = −k2γεeikx+st, (5)

where the jump is taken across the position of the perturbed interface. At
leading order in ε this gives (check!)

p∞ −
[

− σV εeikx+st + p∞ − εσAe
ikx+st

]

= −k2γεeikx+st. (6)

The first term here is the pressure in the air, the second, that in the water.
Simplifying we find

A = −V − γk2. (7)

Having determined the amplitude of the velocity perturbation, A, we can
now calculate the velocity of the interface as ∂φ/∂y, which at leading order
may again be evaluated at y = V t, and this must correspond to ∂y/∂t =
V + εeikx+st (the kinematic condition.) This gives finally

s = Ak = −V k
[

1 +
γk2

V

]

. (8)

We note that the dependence on t cancels out, justifying our assumption of
an exponential time dependence above.

In the absence of surface tension, we see that s > 0 whenever V < 0, thus
the interface perturbation grows (according to linear theory) if the air moves
into the water. It decays, on the other hand, if water moves into air. In
the unstable case, the fastest growing modes are those short waves for which
k →∞.

If γ > 0 then surface tension is predicted to stabilise the shortest waves.
The interface is still unstable, but the fastest growing mode now has a finite
value of k and s.
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