
Hydrodynamic Stability: 3: Circular Flow including 2007 Coursework

In terms of cylindrical polar coordinates (r, θ, z), circular flow has a velocity of the
form u = (0, V (r), 0). This satisfies the inviscid equations (0.6) for any function V (r), but
if the viscous terms are included V must be of the form V = Ar+B/r. This we recognise
as a solid body rotation with angular speed A, and a line vortex at r = 0 of strength 2πB.

Suppose circular flow takes place between the two rigid cylinders r = R1 and r = R2,
where R1 < R2. An inviscid stability analysis perturbs the flow generally as

u = (0, V (r), 0) + ε[u′r(r), u
′
θ(r), u

′
z(r)]ζ where ζ = eikz+imθ+st (3.1)

and 0 < ε � 1. The boundary conditions require u′r = 0 on r = R1, R2. We will only
consider 2-D and axisymmetric perturbations so that respectively either k = 0 or m = 0.

Two-dimensional perturbations: Setting k = 0, u′z = 0 and introducing a stream-
function ψ1 = ψ(r)ζ, so that u′r = imψζ/r and u′θ = −ψ′ζ, we find
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and ∇2ψ = ψ′′+ψ′/r−m2ψ/r2. Here Q is the z-component of the vorticity of the circular
flow. Note that it is constant for the constant rotation V = Ar and zero (except on r = 0)
for the line vortex V = B/r.

(1.) Assuming dQ/dr is continuous, prove that a necessary condition for
instability is that dQ/dr = 0 somewhere in the range R1 < r < R1.
(You may find it helpful to write s = −imΩ where Ω is a complex constant, and modify
the proof of Rayleigh’s inflection point theorem.)

We now consider inviscid axisymmetric perturbations, so that m = 0 (but k 6= 0).

(2.) Show that axisymmetric perturbations must satisfy
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This equation can be written in Sturm-Liouville form
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u′r + λ(−rΦ)u′r = 0 in R1 < r < R2 (3.4)

with u′r = 0 on r = R1 and r = R2, where the eigenvalue λ = k2/s2. Sturm-Liouville
theory tells us that (3.4) has infinitely many eigenvalues, λ, that they are all real, and
they are positive if Φ < 0 but negative if Φ > 0. Positive λ corresponds to real s and
instability. This agrees with the physical argument presented in lectures showing that
if Φ < 0 then energy is released by interchanging two fluid rings while conserving their
angular momentum. Note that the smallest λ corresponds to the largest growth rate, s.

1



Numerical Solution

For given V (r), R1 and R2, equation (3.3) can be solved numerically to find s(k).
Unlike for most hydrodynamic stability problems, we have shown that s2 is real and the
calculation is simplified. There are “black box” routines for solving Sturm-Liouville prob-
lems, such as the NAG Fortran routine D02KAF. (For documentation see the web page
http://www.nag.co.uk/numeric/FL/manual/pdf/D02/d02kaf.pdf) You could alternatively
write the problem in matrix form and use LAPACK or use a boundary value solver in say
MATLAB. Or you could use the “Rayleigh-Ritz” method descibed on problem sheet 2.

Set R2 = 1. If your birthday is the α’th day of the β’th month, set Ω1 = 3β + α and
Ω2 = β. For your V (r) take the steady circular viscous flow V = Ar +B/r which might
be expected when V = R1Ω1 on r = R1 and V = R2Ω2 on r = R2. Now solve the stability
problem (3.4) for this flow numerically, treating k and R1 as parameters.

(3.) Find the value of R1 for which Φ = 0. Choose a value for R1 greater
than this value. Write a program to calculate s as a function of k for this
value of R1 and plot the results. What is the maximum growth rate, smax, of
s for your V (r)? Does it occur at small, large or intermediate values of the
wavenumber k?

(4.) Now consider other values of R1. Determine how smax behaves in the
narrow gap limit as R1 increases towards R2, keeping R2 = 1.

The coursework for this course consists of the 4 questions in bold, surrounded by boxes
above. This should be handed in by 11th May to the Aeronautics office. The numerical
parts (3 & 4) will be given higher priority in the marking. Be sure to give your birthdate
on your coursework.

The effect of viscosity

The Rayleigh Circulation Criterion (Φ > 0) is a good indicator of the stability of these
flows, even when the effects of viscosity are included. For the flow V (r) = Ar +B/r, it is
appropriate to use a parameter known as the Taylor number,

T =
4ABρ2R2

1

µ2
; instability if T � 1700. (3.5)

The effect of viscosity is stabilising for this problem – those flows regarded as stable by
inviscid theory are indeed stable, whereas some flows regarded as unstable may in fact
be stable until the Taylor number is large enough. This is especially true if the cylinders
rotate in opposite directions when the inviscid theory always predicts instability.
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