
Hydrodynamics Stability 4: The en method for 2-D incompressible flow.

The Orr-Somerfeld Equation (OSE) is exact only for genuinely unidirectional flows,
which for viscous flow requires u(y) = ay2 +by+c. However, at high Reynolds number flow
in the boundary layer is almost parallel, in that |u| � |v|. Boundary layer instability has
great practical importance, as it triggers the transition to turbulence on a wing, with great
consequences for separation and resultant drag. It is thus tempting, and mathematically
justifiable as Re →∞, to apply the OSE for boundary layer profiles, assuming the flow is
exactly parallel with whatever streamwise velocity the boundary layer equations predict.
Unfortunately, we are then most interested in the critical Reynolds number, Rc, a relatively
small value of Re where the parallel flow assumption of the OSE is questionable. While
results so obtained usually agree reasonably with experiments, the arguments are not
strictly valid.

A further limitation of the linear OSE is that it cannot predict where breakdown of
the laminar boundary layer will occur. For self-similar profiles, one can argue that the
local Reynolds number is x-dependent (proportional to x1/2 for the Blasius layer on a flat
plate, for example) and thus the critical value Rc can be associated with a critical position
xc at which instability commences. However, the linear theory assumes the perturbation
is infinitesimal, and as it grows exponentially it is advected downstream. At some stage
the linear theory will break down but the flow will still be laminar. Fairly soon thenafter
it will become turbulent, but some criterion is required to determine where this can be
expected.

A simple criterion, known as the “en method”, is widely used and fairly successful.
Essentially this states that transition occurs roughly when linear theory predicts that an
initial disturbance will have grown by a factor of en. A common choice is n = 9, for which
en ' 8103, but the optimum choice of n varies between applications.

For the temporal approach we have used almost exclusively so far, a disturbance has
amplitude A = A0e

ikx+(sr+isi)t], that is the spatial Fourier mode eikx is assumed to grow
in time like esrt. However, as the disturbance moves downstream, the local boundary layer
velocity changes so that sr should not be treated as constant. Between two times t2 and
t1 the corresponding disturbance amplitudes A1 and A2 are related by
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(4.1)

More useful in this context is a representation in spatial modes with typical amplitude
A = A0e

iωt+i(kr+iki)x which describes how a wave of fixed (real) frequency ω grows or
decays downstream like e−kix. Once more, as the base flow evolves ki should be regarded
as variable and the amplitude ratio at two positions x1 and x2 is
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These two approaches are essentially equivalent. If we regard both k and s as complex, so
that k = kr + iki and s = sr + isi, then the eigenvalue equation (or dispersion relation)
can be represented by

F(k, s) = 0 for some function F . (4.3)
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Assuming that (4.3) defines an analytic relation between the complex variables k and s we
can use the Cauchy-Riemann relations

∂sr

∂kr
=
∂si

∂ki

∂sr

∂ki
= −
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∂kr
.

Close to the neutral curve, where k ' kr and s ' iω we have therefore approximately

sr ' −

(
∂ω

∂k

)

ki . (4.4)

This relation can be used to relate (4.2) and (4.1) although strictly (4.4) is only valid for
small growth rates.

Using the en method

For a given boundary layer flow, we solve the OSE for a range of real k and downstream
velocity profiles. We then convert to the spatial mode formulation using (4.4).

Consider the characteristic neutral curve in (x, ω) space as in the figure. A wave of
fixed frequency ω propagating downstream from position x0 is initially damped, but may
enter the unstable region at some value x1 and exiting at a value x2. If the growth defined
by (4.2) is greater than say e9 we can expect transition to occur.

More precisely, at a fixed position x, we consider the growths over all frequencies ω,
and choose the maximum, that is we define

N(x) = max
ω

[log |A(x, ω)/A0|] .

We then find the smallest value of x such that N(x) = 9. This gives our estimate for the
transition point. If we superimpose all the log |A/A0| curves for different ω on the same
graph, the function N(x) appears as the “envelope” of these curves.

The en method has a number of limitations. For example, as presented above, it
assumes that A0 is the same for all frequencies ω. In reality some frequencies will be excited
more than others. The question of boundary layer ‘receptivity’, i.e. how the boundary layer
responds to external forcing has not been considered. It is highly questionable whether the
non-linear regime can be adequately represented by the exponential growth mechanism.

Nevertheless, agreement with 2-D incompressible flows is reasonable. The method can
also be used for modes with a cross-flow component and for compressible flows, but we
will not consider this.
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