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We assume that at every point x of the fluid, and at all times t, we can define properties
like density ρ(x, t), velocity u(x, t), and pressure p(x, t), and that these vary smoothly
(differentiably) over the fluid. Note that we do not deal with the dynamics of individual
molecules. A small volume δV thus has mass δV ρ and momentum δV ρu.

The material derivative: A fluid particle, sometimes called a material element, is
one that moves with the fluid, so that its velocity is u(x, t) and its position x(t) satisfies
ẋ = u(x, t). The rate of change of a quantity as seen by a fluid particle is called the
material derivative and written D/Dt. It is given by the chain rule as

D

Dt
≡

∂

∂t
+ u·∇. (0.1)

Mass conservation:
Dρ

Dt
+ ρ∇ · u = 0. (0.2)

For an incompressible fluid, the density of each material element is constant, and

Incompressible flow:
Dρ

Dt
= 0 =⇒ ∇·u = 0. (0.3)

In this course we shall concentrate on fluids that are incompressible and have uniform
density, so that ρ is independent of both x and t.

Streamfunctions in 2D and axisymmetry

For two-dimensional flows, the condition ∇ · u = 0 is automatically satisfied by

u = ∇∧
(
0, 0, ψ(x, y)

)
= (ψy,−ψx, 0). (0.4)

ψ(x, y) is called the streamfunction.

In axisymmetric flows, in terms of cylindrical polar coordinates (r, θ, z), the incom-
pressibility condition ∇ · u = 0 is satisfied using the Stokes streamfunction, ψ(r, z),
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The Navier-Stokes Equations for an incompressible fluid

ρ
Du

Dt
≡ ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p+ F + µ∇2u . (0.6)

∇ · u = 0 . (0.7)

In (0.6) µ is the viscosity, assumed constant, and F a body force, perhaps gravity, F = ρg.
In cylindrical polar cordinates, (r, θ, z), with velocity u = (ur, uθ, uz), (0.6-0.7) become
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Coordinates ρ
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Boundary Conditions

In order to determine the velocity u(x, t) and pressure p(x, t) in some region V ,
we need to know what boundary conditions to apply on the surface S. The appropriate
conditions to apply are that the velocity and the total stress should be continuous across
any interface. Here ‘total stress’ includes any surface tension (see below.)

(a) Fluid/solid boundaries: A solid boundary can provide whatever stress is needed
to support the fluid motion, so it is sufficient to require that the fluid velocity u be the
same as the velocity of the boundary. Thus for a stationary boundary

u = 0 . (0.9)

Note that (0.9) requires that the tangential velocity components be zero as well as the
normal component. In inviscid flow only the normal velocity need be continuous at
an interface, and a ‘slip velocity’ must be permitted. The presence in the Navier-Stokes
equation of the second derivative µ∇2u requires an extra boundary condition.

(b) Fluid/fluid boundaries: These are more complicated, because the interface
can move. Furthermore, it is a physical fact that an extra normal stress, due to surface
tension, acts on the interface. This extra stress takes the form γK(x) where γ is the
positive surface tension constant, and K is the curvature of the fluid surface, which can
be defined by K = ∇ · n̂ where n̂ is the unit normal to the interface.

If one of the fluids is dynamically negligible, as often happens with a liquid/gas inter-
face, then we can treat one fluid as having a constant pressure p0 and neglect its motion. If
the interface is stationary, then the appropriate boundary conditions to apply on the other
fluid are zero normal velocity and zero tangential stress. (So if the surface is y = 0 and
velocity (u, v, 0) then we have v = 0 and µ∂u/∂y = 0. For inviscid flow, µ = 0 and the
tangential stress condition is trivial.) If the interface moves and we describe its position
at time t by the function ζ(x, t) = 0, then the kinematic boundary condition for the
normal velocity can be written

Dζ

Dt
= 0. (0.10)



Inviscid and high-Reynolds-number Flows
When written in terms of nondimensional variables, a parameter, Re, known as the

Reynolds number appears in the equations. Re essentially measures the relative importance
of the inertial to the viscous forces. and is defined by Re = ρLU/µ where L is a typical
length-scale of the problem, and U a typical velocity magnitude.

At low values of Re, it can be proved that only one steady solution of the Navier-Stokes
equations exists, and that this flow is stable in the sense defined below. For high values
of Re, there are many examples where more than one stable, steady solution is known to
exist. Flow instability is strongly linked with the existence of more than one solution.

When Re � 1, it is tempting to neglect the viscous terms, setting µ = 0. If this is done,
one of the boundary conditions must be omitted, usually allowing tangential slip. Some
caution is necessary, as viscous boundary layers form near solid surfaces in which the
velocity develops strong gradients so that the viscous term cannot be neglected. Boundary

layers typically have thickness L/R
1/2
e and must remain thin for the “core/layer” structure

to be valid. Inside a steady boundary layer, where x and y are measured parallel and
normal to the boundary, the governing equations for u = (u, v, 0)

ρ(uux + vuy) = −px + µuyy py = 0 ux + vy = 0 (0.11)

These equations are parabolic which means they must be solved in the downstream
direction. The pressure does not vary across the layer and is determined by the conditions
at “y = ∞” which means the external potential flow. The boundary layer equations
tend to be valid so long as the pressure gradient is favourable, which means −px > 0.
If the pressure gradient is unfavourable, there is a strong likelihood that separation of
the boundary layer will occur. This is manifested by the solution to the boundary layer
equations developing a singularity. Separation completely alters the external flow, and
leads for example to “stall” of aircraft.

The vorticity equation is obtained by taking the curl of (0.6). Writing ω = ∇ ∧ u
we have

ρ

(
∂ω

∂t
+ u · ∇ω − ω · ∇u

)

= µ∇2ω . (0.12)

For two-dimensional flow, if we write u = ∇∧ (0, 0, ψ(x, y, t)) and ω = (0, 0, ω) then

ρ
Dω

Dt
= µ∇2ω, and ω = −∇2ψ . (0.13)

A flow for which ω = 0 everywhere is said to be irrotational. Then we can introduce a
velocity potential, φ, such that u = ∇φ.

Inviscid Flows: As there is no source term in (0.12), vorticity can only be generated
at boundaries. If µ = 0 then a flow which is irrotational initially remains irrotational for
all time. The time-dependent Bernoulli theorem states that for irrotational flows,
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ρ
= constant. (0.14)

Turbulence: At high values of Re it is found experimentally that fluid flows tend
to become unsteady and highly chaotic, even though a simple steady flow could exist in



theory. Turbulent flows are difficult to analyse and have important practical implications.
The manner in which transition to turbulence of a laminar flow occurs is an important
topic. The first stage in this process is that the underlying steady flow becomes unstable.
In this course we examine Hydrodynamic Stability.

Stability Concepts

For a given problem, we solve the governing equations and obtain a solution which
we assume is steady, u = U(x) with a corresponding pressure distribution p = P (x). We
then make a small perturbation to the flow, so that

u = U(x) + εu′(x, t), p = P (x) + εp′(x, t) (0.15)

where ε is a small positive constant. We then consider the behaviour of u′. If εu′ remains
small for all time, we say that the underlying flow is stable, whereas if it eventually
becomes large no matter how small ε is, we say the flow is unstable.

The exact equations for u′ and p′ are

ρ

(
∂u′

∂t
+ U · ∇u′ + u′ · ∇U + εu′ · ∇u′

)

= −∇p′ + µ∇2u′, ∇ · u′ = 0 (0.16)

Linear stability theory neglects the last term on the LHS, as ε is arbitrarily small. The
resulting linear equation has solutions of the form u′ = û(x)est for some vector function û
and constant s, and similarly p′ = p̂(x)est. This is because none of the coefficients depends
on t as U is steady. The general solution to this problem will be a linear combination of
all these particular solutions. The possible values of s can be regarded as eigenvalues of
the system. These can be real, but are in general complex

s = sr + isi, est = esrt [cos(sit) + i sin(sit)]

(a) If for all possible values of s we have sr < 0 we say the flow is stable.
(b) If there is at least one eigenvalue s for which sr > 0, the flow is unstable.
(c) If sr = 0 for some eigenvalue, we say the flow is neutrally stable. In this case

nonlinear terms may be particularly important.

Surface stability: If the fluid has a free surface, this will deform in accordance with
the normal stress associated with the perturbation velocity. Free surfaces can be unstable
even at very low Re.

The above approach looks at perturbation modes with a fixed spatial structure and
examines how they evolve in time, a process known as temporal stability. An alternative
approach, which is often appropriate, is to consider the spatial evolution of a localised
disturbance in the flow. This disturbance may grow as it is advected downstream, so that
the place where the instability occurs is far away from the disturbance. This is known as
convective instability. In practice it is possible that the region of flow interest is too
small for an instability of a given initial magnitude to develop. If a disturbance at a given
position leads to growth at that position this is known as absolute instability.


