
Kelvin-Helmholtz and Rayleigh-Taylor Instabilities

Consider two fluid regions, y > 0 and y < 0. In y > 0 let the fluid have uniform
velocity u = (U1, 0, 0) and constant density ρ = ρ1, whereas in y < 0 let ρ = ρ2 and
u = (U2, 0, 0). Gravity is assumed to act in the negative y-direction, g = (0, −g, 0). This
configuration could represent wind blowing over a lake, or a model of separated flow over
a step.

We will assume the flow is inviscid. It can therefore suffer the tangential velocity
discontinuity at y = 0. The vortex sheet associated with this discontinuity would diffuse
outwards if µ 6= 0, but we will neglect this spreading and assume that the interface has
the shape y = εh(x, t). As there is no vorticity elsewhere in the flow initially, we expect
the flow to be irrotational, i.e.

u = ∇φ where ∇2φ = 0. (1.1)

Then we write

φ = U1x+ εφ1 in y > 0, φ = U2x+ εφ2 in y < 0 . (1.2)

We want φ1 → 0 as y → ∞ and φ2 → 0 as y → −∞. The kinematic boundary condition
takes the form on the interface

0 =
D

Dt
(y − εh) =

∂φ

∂y
− ε

∂h

∂t
− ε

∂φ

∂x

∂h

∂x
. (1.3)

or neglecting terms of O(ε2),

∂φ1

∂y
=
∂h

∂t
+ U1

∂h

∂x
and

∂φ2

∂y
=
∂h

∂t
+ U2

∂h

∂x
. (1.4)

To leading order we can evaluate (1.4) on y = 0 rather than y = εh. The other condition
to apply is that the pressure must be continuous across the interface or if we ignore surface
tension for the moment p1 = p2 on y = εh. The time-dependent Bernoulli condition is
from (0.14)

p+ ρ

(
∂φ

∂t
+ 1

2 |∇φ|
2 + gy

)

= constant,

so that to leading order on the interface y = εh,

ρ1

(
∂φ1

∂t
+ U1

∂φ1

∂x
+ gh

)

= ρ2

(
∂φ2

∂t
+ U2

∂φ2

∂x
+ gh

)

. (1.5)

Once more, we can evaluate (1.5) on y = 0 rather than y = εh.
As neither x or t appears in the coefficients of the problem, we can seek a solution

proportional to eikx+st. Here k > 0 is a real wave-number, and s is possibly complex. If
we can find a value of k for which the corresponding s has a positive real part (<e(s) > 0),
then the interface y = 0 is unstable. We write

h = h0e
ikx+st, φ1 = Φ1(y)eikx+st, φ2 = Φ2(y)eikx+st .
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Then Φ1(y) satisfies the ODE and boundary conditions

Φ′′1 − k
2Φ1 = 0, Φ1 → 0 as y →∞ Φ′1(0) = h0(s+ ikU1) (1.6)

from which it follows that

Φ1(y) = −
h0

k
(s+ ikU1)e−ky and similarly Φ2(y) =

h0

k
(s+ ikU2)eky . (1.7)

The pressure constraint (1.4) requires that

ρ1 [(s+ ikU1)Φ1(0) + gh0] = ρ2 [(s+ ikU2)Φ2(0) + gh0] (1.8)

or combining (1.8) and (1.7),

ρ1

[
gk − (s+ ikU1)2

]
= ρ2

[
gk + (s+ ikU2)2

]
. (1.9)

This is a quadratic equation for s(k), which is in general known as the dispersion rela-
tion. Solving this equation we obtain

s = −ik
ρ1U1 + ρ2U2

ρ1 + ρ2
±

[
k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
+ kg

ρ1 − ρ2

ρ1 + ρ2

]1/2

. (1.10)

For instability, s must have a positive real part. It is clear that this will occur if and only
if the quantity in square brackets is positive, that is if

Instability if: k2ρ1ρ2(U1 − U2)2 > kg(ρ2
2 − ρ

2
1) . (1.11)

Instability of a vortex sheet: If U1 6= U2, we see from (1.11) that instability always
occurs for large enough k, i.e. for short wavelengths. The smaller the wavelength the larger
the growth rate. This is known as the Kelvin-Helmholtz instability.

Water waves: For example, consider air moving over a stationary lake, so that
U2 = 0, ρ2 � ρ1. Instability occurs if

k >
g

U2
1

ρ2

ρ1
(1.12)

Heavy fluid over light fluid: If ρ1 > ρ2 we see that every value of k leads to
instability (recall k > 0). This is known as the Rayleigh-Taylor instability.

Wave frequencies: If U1 = U2 = 0 and ρ1 < ρ2 then the interface can support
surface waves of frequency ω (s = iω) where

ω =
√
gk

(
ρ2 − ρ1

ρ2 + ρ1

)1/2

. (1.13)

The phase velocity c = ω/k for small water waves (ρ1 = 0) is therefore c = (g/k)1/2.
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Three dimensional disturbances:

So far we have only considered 2-D perturbations. If instead we allow the surface to
take the form

y = εh0e
ikx+ilz+st where κ = (k2 + l2)1/2 , (1.14)

then the analysis is very similar, with for example Φ1 ∝ eκy. The instability condition
(1.11) remains the same with the “k” on the RHS replaced by “κ.” As κ > k, we can infer
from this that if a mode with a particular (k, l) is unstable so is the mode with (k, 0), and
indeed the growth rate is larger for the 2-D disturbance. We will meet this idea later –
an example of Squires’ theorem.

If a configuration is unstable, we have shown that the largest growth rates have large k,
and are formally infinite. In practice, some physical effect we have neglected will become
important. Two processes we might expect to limit the size of the wave-number and
growth-rates are viscosity and surface tension.

The effect of Surface Tension

The curvature of the surface (1.14) is

K = ∇ · n̂ = ∇ · [(−εikh0, 1, −εilh0)eikx+ilz+st] = εκ2h0 e
ikx+ilz+st . (1.15)

The normal stress condition p1 = p2 is now replaced by p1 = p2 + γK. Making this
modification, the dispersion relation (1.10) takes the form

s = −ik
ρ1U1 + ρ2U2

ρ1 + ρ2
±

[
k2ρ1ρ2(U1 − U2)2

(ρ1 + ρ2)2
+
κg(ρ1 − ρ2)− κ3γ

ρ1 + ρ2

]1/2

. (1.16)

The cubic term γκ3 will clearly dominate the large wave-numbers irrespective of the other
parameters, so as we might expect, surface tension strongly resists high-curvature pertur-
bations. Likewise, if κ � 1, the linear gravitational term will be largest, so that the long
wavelengths will be unstable if ρ1 > ρ2. If ρ2 > ρ1, however, it is possible for the flow to
be stable for all k and l. Once more we can show that the most unstable case has l = 0 so
we can replace κ by k. The term in brackets is negative for all k > 0, giving stability, if

(U1 − U2)2 <
2(ρ1 + ρ2)

ρ1ρ2
[γg(ρ2 − ρ1)]

1/2
. (1.17)

As |U1 − U2| increases, the first wave to go unstable has k2 = g(ρ2 − ρ1)/γ We can now
calculate the wind speed necessary to drive waves on the surface of a lake. If we put
g = 9.8, U2 = 0, ρ2 = 1000 ρ1 = 1.25 and γ = 0.074 appropriate for air above water, we
find U1 = 6.6m/s. At this critical wind-speed, the wavelength of the waves is 2π/k = 1.7cm.
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Fluids in a rigid cylinder

We have seen that a vortex sheet can be stabilised by the combined action of gravity and
surface tension. Is it possible for the gravitational instability of a heavy fluid being held
over a light fluid to be nullified? Let us consider a vertical, rigid cylinder of radius a. We
shall use cylindrical polar coordinates (r, θ, z), Once more z > 0 contains a fluid of density
ρ1 and z < 0 has density ρ2. We perturb the interface z = 0 to z = εh(r, θ).

Then the velocity is u = ∇φ with ∇2φ = 0, or

u =

(
∂φ

∂r
,

1

r

∂φ

∂θ
,
∂φ

∂z

)

,
1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2

∂2φ

∂θ2
+
∂2φ

∂z2
= 0 . (1.18)

The separable solutions to Laplace’s equation in this geometry are

φ = Ae±kzJm(kr)eimθ+st (1.19)

where Jm is a Bessel function. u(r) = Jm(kr) is the solution to the problem

u′′ +
1

r
u′ + u

(

k2 −
m2

r2

)

= 0 with u(0) = 1 (1.20).

The possible values of k are determined by the rigid wall at r = a, where the normal
velocity, ∂φ/∂r = 0 or J ′m(ka) = 0. This gives a set of possible values k = kmn, for
m = 0, 1 . . ., n = 1, 2 . . . Note that m = 0 is an axisymmetric disturbance. The kinematic
constraint is that ∂φ/∂z = ∂h/∂t on z = 0 which suggests we look at perturbations

z = εh0Jm(kr)eimθ+st =⇒ K = k2h . (1.21)

The pressure boundary condition on z = h is

ρ1

(
∂φ1

∂t
+ gh

)

= ρ2

(
∂φ2

∂t
+ gh

)

+ γK . (1.22)

Putting all this together, we obtain the dispersion relation

s2 =
k[g(ρ1 − ρ2)− γk2]

ρ1 + ρ2
where J ′m(ka) = 0. (1.23)

We see that we get stability provided the smallest admissable value of ka satisfies

(ka)2
min >

ga2(ρ1 − ρ2)

γ
. (1.24)

It turns out that the smallest value of ka occurs when m = 1, and (ka)min ' 1.8. This
predicts that the largest pipe radius for which surface tension can support water above air
is about 2cm.

Does this agree with your physical intuition, or did you expect the fluid to fall out in
an axisymmetric manner?

The theory predicts that if the interface is unstable the air will rush in one side of the
pipe (say near θ ∼ 0) and the fluid will fall out on the other (θ ∼ π).
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Inviscid instability of a cylindrical jet

When we turn on a tap a jet of water emerges, whose cylindrical surface quickly becomes
kinked and then breaks up into drops. As we shall see, this is a capillary or surface
tension instability. Gravity may be neglected during the evolution of the jet.

Consider a liquid cylinder 0 < r < a moving with constant velocity (0, 0, U) in the
axial z-direction. The outside we consider to be dynamically negligible, so that the external
pressure is constant on the surface. We envisage a surface perturbation of the form

r = a(1 + εζ) ≡ a
(
1 + εeikz+imθ

)
. (1.25)

Here m must be an integer, but k can be any positive number. The curvature of this
surface K = ∇ · n̂ takes the form (ignoring terms proportional to ε2)

n̂ = (1, −εimζ, −ikaεζ) K =
1

r
+
ε

a
(m2 + k2a2)ζ =

1

a
+
εζ

a
(m2 + k2a2 − 1) . (1.26)

Taking the velocity u = (0, 0, U) +∇φ, the kinematic boundary condition on r = a is

0 =
D

Dt
(r − a− aεζ) =⇒

∂φ

∂r
= εaζ(s+ ikU) , (1.27)

and the pressure condition is

ρsφ+ 1
2ρ2Uikφ+ γK = constant. (1.28)

The solutions to Laplace’s equation take the form

φ = εAIm(kr)ζ where u = Im(kr) satisfies u′′+
u′

r
−

(

k2 +
m2

r2

)

u = 0 . (1.29)

Im is called a modified Bessel function (compare (1.20).) It behaves like rm near r = 0
and increases monotonically, behaving like ekr as r →∞.

Combining (1.29), (1.28) and (1.27), we find that

(s+ ikU)2 =
γ

ρa3
(1−m2 − k2a2)

(
kaI ′m(ka)

Im(ka)

)

. (1.30)

The last factor involving Bessel functions is always positive, so doesn’t affect the stability.
We see the RHS is negative if m > 1 or if ka > 1, However, the long, axisymmetric waves
with m = 0 and 0 < ka < 1 are unstable. The jet is unstable to all axial wavelengths
larger than its circumference (2πa). Calculation shows that the greatest value of s occurs
at ka ' 0.7. This was shown by Lord Rayleigh in 1879. Try it in your kitchen! The theory
predicts a wavelength of about 4.5 jet diameters.
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