Hydrodynamic Stability: Problem Sheet 2 February 2007

1. Absolute and convective instability: Consider the model problem for u(xt)

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} = \sigma u$$
 where V and σ are constants.

Consider perturbations to the solution u = 0 of the form $u = \varepsilon e^{ikx+st}$ and deduce the condition for stability.

Now consider the **initial value problem**, where $u = \varepsilon f(x)$ at t = 0. Show, by direct substitution or otherwise, that

$$u = \varepsilon e^{\sigma t} f(x - Vt) \; .$$

Does this solution agree with your stability criterion? Suppose $f(x) = \operatorname{sech}^2(x)$. Sketch f(x).

Assuming $\sigma > 0$, look at the behaviour of u as $t \to \infty$ for a fixed value of x. If $u \to \infty$ the flow is absolutely unstable. If however, $u \to 0$ for fixed x, and yet the flow is unstable, it is convectively unstable. Deduce that for this perturbation the flow is absolutely unstable if $\sigma > 2V$, assuming V > 0.

2. Derive the Rayleigh equation for the perturbed 1-D profile

$$\mathbf{u} = (U(y), 0, 0) + \varepsilon(\psi'(y), -ik\psi(y), 0)e^{ik(x-ct)}$$

You may assume that at points where U or U' are discontinuous, the kinematic condition requires $\psi/(U-c)$ must be continuous, while the dynamic (pressure) condition requires that $(U-c)\psi' - U'\psi$ must be continuous.

Consider the piecewise linear flow

$$U = 0$$
 for $|y| > 1$, $U = 1 - |y|$ for $|y| < 1$.

Sketch U(y) and find $\psi(y)$ in |y| > 1 and |y| < 1 assuming that $\psi(y)$ is an even function. Show that

$$2k^{2}c^{2} + k(1 - 2k - e^{-2k})c - [1 - k - (1 + k)e^{-2k}] = 0$$

Derive the condition for c to have an imaginary part, giving instability. [The resulting equation can only be solved numerically. The critical wave-number is $k = k_c \simeq 1.8$, with instability for $k < k_c$.]

3. Which of the following profiles in an unbounded fluid might be inviscidly unstable? (a) $U = \tanh(y)$, (b) $U = y^3$, (c) $U = e^{-y^2}$, (d) $U = y^4$, (e) $U = e^{-y^2} \cos(y)$?

- 4. Show that if c is an eigenvalue of the Rayleigh equation for a given U(y) then so is its complex conjugate c^* . Is the same true of the Orr-Sommerfeld equation?
- 5. Write the skeleton of a computer program, in a language of your choice, to solve the Rayleigh equation for a given smooth function U(y) in 0 < y < 1. You may assume the existence of a subroutine which either
- (a) finds the (complex) eigenvalues λ for $n \times n$ matrices A and B such that $A\mathbf{x} + \lambda B\mathbf{x} = 0$, or
- (b) solves the simultaneous first order differential equations for $\mathbf{x}(t)$

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, t)$$
 with $\mathbf{x}(t_0) = \mathbf{x}_0$

for given functions \mathbf{f} and initial values \mathbf{x}_0 .

You may also assume the existence of a routine which attemps to find a zero of a function g(x) in $x_0 < x < x_1$. Give a reasonable amount of detail; make sure you define the matrices A and B and the functions \mathbf{f} and g.

6. Suppose that λ is an eigenvalue of the Sturm-Liouville equation for y(x) in a < x < b

$$(p(x)y')' + q(x)y + \lambda w(x)y = 0$$
 with $y(a) = 0$, $y(b) = 0$.

You may assume that the eigenvalues λ are real. Show that

$$\lambda = F[y] \equiv \frac{\int_a^b \left[p(y')^2 - qy^2 \right] \, dx}{\int_a^b wy^2 \, dx}$$

It can be shown that the eigenvalues λ are stationary values of the functional F[y]; in particular, the smallest eigenvalue, λ_0 is the global minimum of F[y] taken over all differentiable functions y(x) which satisfy the boundary conditions. One can therefore obtain an estimate for λ_0 by substituting suitable functions y into F[y] and taking the smallest result. This is called the **Rayleigh-Ritz** method. Before the advent of computers it was quite important.

Try the method for the simple problem in 0 < x < 1

$$y'' + \lambda y = 0$$
 with $y(0) = 0$, $y(1) = 0$

whose smallest eigenvalue is π^2 . Use as a trial function for y a quadratic $y = x^2 + \alpha x + \beta$, choosing α and β to obey the boundary conditions. Evaluate F[y] for this function and compare with the exact result.

If you wish, you may use the Rayleigh-Ritz method in your coursework, but you must be clear which trial functions you are using and should use more than one function.