Hydrodynamic Stability: 2. The Stability of Plane Parallel Flow
(Some of these notes derive from material provided by Dr Robert Hunt.)

Nondimensionalisation: Consider a basic 2D flow (U.(y.), 0, 0) in the z-direction in
an incompressible inviscid fluid between two plane boundaries y, = y14« and y2.. These
boundaries may be either rigid (no normal velocity) or free (constant pressure), and either
of them may be at infinity. The asterisk denotes a dimensional (physical) quantity; we
nondimensionalize using a length L which is characteristic of the problem (e.g. %(yg* —Y1x))
and a velocity V' (e.g. max |U,(y«)|). Then defining
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and  Uly) = . (y.)

we obtain the momentum and continuity equations with R, = pV L/pu

%u—l—u-Vu: —-Vp+ [R6_1V2u], -u=0. (2.1)

To begin with we consider the inviscid limit, letting R, — oo. Clearly, u = (U(y), 0, 0)
is then a solution when p = pg, a constant, for any profile U(y). This is called a uni-
directional or parallel flow. If we include viscosity, however, the only permissible func-
tions U(y) are quadratic, e.g. Poiseuille U = 1 — 32 or simple shear U = y.

To analyse the stability, we try a small disturbance

u=(U,0,0)+ cuy, P = Po + €p1, (2.2)

where u; = (u1, v1, 0) is the disturbance velocity. (The analysis below can be performed
for fully 3D disturbances with u; = (u1, v1, wy) but it may be reduced to this 2D case
using Squires’ theorem.) Substituting these expressions into the equations of motion
and linearising (i.e., ignoring u; - Vu;) we obtain

0 0 aUu
<E+U8_) u1+<v1d—y,0, 0> = —Vps, V.-u; =0.

Let ¥ be the disturbance stream-function such that
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We take double Fourier Transforms in x and ¢, i.e., we consider Fourier modes
wl — {/\;(kj, v, w)eikmfiwa pL = ﬁ(k, v, w)eik'mfiwt.
The equation of motion then gives

o odd dU =
(—zw+zUk:)d—y — k:d—yd) = —ikp,
dp

—ik(—iw + iUk)) = %




which lead to Rayleigh’s stability equation
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Writing ¢ for 1;, Rayleigh’s equation is usually written

(U —)@" = k) =U"¢p =0 (2.8)
where ¢ = w/k is the phase speed and ¥ (y) is the “mode shape”. ¢ is in general complex
and we write

c=cr+ic; . (2.9)
For instability we need ¢; > 0.

Rayleigh’s equation must be solved subject to boundary conditions at y = y; and y»;
in the case of rigid boundaries, ¥» = 0 there. This is an eigenvalue problem and will only
have solutions for particular values of w and k, leading to a dispersion relation f(k,w) = 0.
Note that when k is real, if ¢(y) is a solution corresponding to w then ¥* is also a solution
corresponding to w*, where * denotes a complex conjugate.

We have assumed that the velocity profile U (y) is twice differentiable in deriving (2.9).
If this is not the case, for example if U(y) or U'(y) is discontinuous at some value, say
Yy = Yo, we should solve (2.8) separately in y < yo and y > yo, and then ensure that the
pressure p is continuous at y = yo. From (2.6) we have

p=yU" — (U - )y is continuous everywhere. (2.10)
If U is continuous we must have v continuous at y = y, but if U is discontinuous we

must derive the kinematic condition as we did before. Perturbing the vortex sheet to
y = yo + choe’*® =) we find on both sides of the sheet

ho (0

T U2 = Uq’i . must be continuous everywhere. (2.11)

Necessary conditions for instability

As discussed earlier, we can determine whether the flow is unstable by searching real
k for a corresponding wave speed ¢ with ¢; > 0.

Rayleigh’s inflection-point theorem: If the flow is unstable then U(y) has an
inflection point.
Proof: Since the flow is unstable, we have for some real k with ¢; > 0,
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Multiplying by the complex conjugate ¥* and integrating gives
Y2 U’
[ (e e ) dy=o (2.13)
Y1 U-c

after an integration by parts for the first term. Taking imaginary parts,
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Hence U” must change sign (at least once).

Y=0. (2.12)
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Fjortoft’s theorem: If the flow is unstable then U” (U — Uy) < 0 for some value of
y in (y1,y2), where ys is a point at which U”(ys) = 0, and Us = U/(ys).
Proof: The real part of (2.13) gives
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Now fyyf U'|/(U - ¢)|?dy = 0, so adding (¢, — U,) times this gives
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from which the result follows.

Examples:
(i) Here U” < 0 everywhere, so the flow is necessarily stable by
Rayleigh’s theorem.
(ii) Here U"” = 0 at ys; but U"(U — Us) > 0 everywhere so the flow
is stable by Fjgrtoft’s theorem.
(iii) Here U” = 0 at ys, but U"”(U —Uy) < 0 everywhere. This flow
might be unstable.

Note that both theorems give only necessary, not sufficient, conditions for instability.
U = siny can be shown to satisfy the conditions but to be stable if yo — y; < 7.

The Viscous Case: The Orr-Sommerfeld equation.

For a viscous fluid subject to a basic flow which is either plane Couette flow (U = y)
or plane Poiseuille flow (U = 1 — y?), an analysis similar to that above leads to the Orr—
Sommerfeld equation
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(w//// _ 2k2¢ﬁ + k4¢) (2.17)

where R, = VL/v is the Reynolds number. It leads to a dispersion relation of the form
F(k, ¢; kR.) = 0 which depends on the value of R. We are interested in the values of k
and R, for which ¢; > 0 giving instability. Usually we draw the neutral stability curve,
where ¢; = 0 in the parametric plane (k, kR.). Typically, there is a minimum value R, of
R, above which some mode becomes unstable. The theory then predicts instability will
set in for R, > R,.

The Orr-Sommerfeld equation can also be used to analyse the stability of boundary
layers, for example to predict the behaviour of small disturbances in the Blasius layer on
a semi-infinite flat plate. Although the flow in the boundary layer is not exactly parallel,
it can be argued that correct results will be obtained by analysing the stability of a uni-
directional flow which agrees with the U (y)-profile at some distance x along the layer. For
the Blasius boundary layer, because of its self-similar structure and a layer thickness which
increases as /2, the critical Reynolds number can be interpreted as a critical distance
along the plate at which instability will commence.




Squires’ Theorem:

If a 3D-mode e**Ti= becomes unstable at a particular value of R., then there is an
equivalent 2D-mode which is unstable at a smaller value of R.. It therefore suffices to
consider only 2-D modes.

Proof: Consider the 3-D perturbation

u=(U(y), 0, 0) +e(u(y), v(y), wly)) er* =+t (2.18)
Then the perturbed Navier-Stokes equations are

iku + v+ ilw =0
(s +ikU)u+vU" = —ikp + R (u" — k*u — 1Pu)
(s +ikU)v = —p' + R (v" — kK*v — 1%v)
(s +ikU)w = —ilp + R, (w" — K*w — IPw)

We now define variables u and p such that
= (ku + lw)/k, p=kp/k where % = (K> +12) . (2.20)

Then the first equation becomes ik% + v’ = 0 while adding k times the 2nd equation to I
times the 4th we obtain

(s + ikU)ka + koU’ = —ik p+ R k(@ — & 1) (2.21)

or writing R = kR, /k, and 5 = sk/k

5+ ikU)T+oU' = —ikp+ R (@' — % 1)
(5 +ikUw = —p + E_l(v" - Ezv) (2:22)
iki+v =0

Comparing (2.22) with (2.19), we see that the 3D problem to find 5 in terms of k¥ and
R is mathematically identical to the 2D problem obtained by setting [ = 0 in (2.19).
Furthermore, if we write s = —ike, then 5 = —ikc.

Consider first the inviscid problem, setting (R.)”! = 0. Then if a mode (k,1) is
unstable with growth rate Re(s), then the mode (k,0) must also be unstable with growth
rate Re(5). But as k > k, the 2D disturbance grows faster.

If R, is finite, then the 3-D mode (k,l) may go unstable at some critical Reynolds
number R, = R,, corresponding to R = R, = kR,./k. Then by the mathematical similarity,
the 2-D mode (k,0) will go unstable at R, = R.. But as R. < R., an equivalent 2-D
mode will go unstable at a lower Reynolds number. We deduce that 2-D modes
are the first to go unstable as R, increases, and it is sufficient to consider these only.




