
Hydrodynamic Stability: 2. The Stability of Plane Parallel Flow

(Some of these notes derive from material provided by Dr Robert Hunt.)

Nondimensionalisation: Consider a basic 2D flow (U∗(y∗), 0, 0) in the x-direction in
an incompressible inviscid fluid between two plane boundaries y∗ = y1∗ and y2∗. These
boundaries may be either rigid (no normal velocity) or free (constant pressure), and either
of them may be at infinity. The asterisk denotes a dimensional (physical) quantity; we
nondimensionalize using a length L which is characteristic of the problem (e.g. 1

2 (y2∗−y1∗))
and a velocity V (e.g. max |U∗(y∗)|). Then defining

x =
1

L
x∗, u =

1

V
u∗, t =

V

L
t∗, p =

1

ρV 2
p∗ and U(y) =

1

V
U∗(y∗)

we obtain the momentum and continuity equations with Re = ρV L/µ

∂

∂t
u + u · ∇u = −∇p+

[
R−1
e ∇

2u
]
, ∇ · u = 0. (2.1)

To begin with we consider the inviscid limit, letting Re → ∞. Clearly, u = (U(y), 0, 0)
is then a solution when p = p0, a constant, for any profile U(y). This is called a uni-
directional or parallel flow. If we include viscosity, however, the only permissible func-
tions U(y) are quadratic, e.g. Poiseuille U = 1− y2 or simple shear U = y.

To analyse the stability, we try a small disturbance

u = (U, 0, 0) + εu1, p = p0 + εp1, (2.2)

where u1 = (u1, v1, 0) is the disturbance velocity. (The analysis below can be performed
for fully 3D disturbances with u1 = (u1, v1, w1) but it may be reduced to this 2D case
using Squires’ theorem.) Substituting these expressions into the equations of motion
and linearising (i.e., ignoring u1 · ∇u1) we obtain

(
∂

∂t
+ U

∂

∂x

)

u1 +

(

v1
dU

dy
, 0, 0

)

= −∇p1, ∇ · u1 = 0. (2.3)

Let ψ1 be the disturbance stream-function such that

u1 =
∂ψ1

∂y
, v1 = −

∂ψ1

∂x
. (2.4)

We take double Fourier Transforms in x and t, i.e., we consider Fourier modes

ψ1 = ψ̃(k, y, ω)eikx−iωt, p1 = p̃(k, y, ω)eikx−iωt. (2.5)

The equation of motion then gives

(−iω + iUk)
dψ̃

dy
− ik

dU

dy
ψ̃ = −ikp̃,

−ik(−iω + iUk)ψ̃ = −
dp̃

dy





(2.6)
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which lead to Rayleigh’s stability equation
(
U −

ω

k

)(d2ψ̃

dy2
− k2ψ̃

)

−
d2U

dy2
ψ̃ = 0. (2.7)

Writing ψ for ψ̃, Rayleigh’s equation is usually written

(U − c)(ψ′′ − k2ψ)− U ′′ψ = 0 (2.8)

where c = ω/k is the phase speed and ψ(y) is the “mode shape”. c is in general complex
and we write

c = cr + ici . (2.9)

For instability we need ci > 0.
Rayleigh’s equation must be solved subject to boundary conditions at y = y1 and y2;

in the case of rigid boundaries, ψ = 0 there. This is an eigenvalue problem and will only
have solutions for particular values of ω and k, leading to a dispersion relation f(k, ω) = 0.
Note that when k is real, if ψ(y) is a solution corresponding to ω then ψ∗ is also a solution
corresponding to ω∗, where ∗ denotes a complex conjugate.

We have assumed that the velocity profile U(y) is twice differentiable in deriving (2.9).
If this is not the case, for example if U(y) or U ′(y) is discontinuous at some value, say
y = y0, we should solve (2.8) separately in y < y0 and y > y0, and then ensure that the
pressure p̃ is continuous at y = y0. From (2.6) we have

p̃ = ψU ′ − (U − c)ψ′ is continuous everywhere. (2.10)

If U is continuous we must have ψ continuous at y = y0, but if U is discontinuous we
must derive the kinematic condition as we did before. Perturbing the vortex sheet to
y = y0 + εh0e

ik(x−ct) we find on both sides of the sheet

h0

ik
=

ψ

U − c
=⇒

ψ

U − c
must be continuous everywhere. (2.11)

Necessary conditions for instability

As discussed earlier, we can determine whether the flow is unstable by searching real
k for a corresponding wave speed c with ci > 0.

Rayleigh’s inflection-point theorem: If the flow is unstable then U(y) has an
inflection point.

Proof: Since the flow is unstable, we have for some real k with ci > 0,

ψ′′ − k2ψ −
U ′′

U − c
ψ = 0 . (2.12)

Multiplying by the complex conjugate ψ∗ and integrating gives
∫ y2

y1

(

|ψ′|2 + k2|ψ|2 +
U ′′

U − c
|ψ|2

)

dy = 0 (2.13)

after an integration by parts for the first term. Taking imaginary parts,
∫ y2

y1

U ′′ =m(U − c∗)
|U − c|2

|ψ|2 dy = 0 =⇒ ci

∫ y2

y1

U ′′
∣
∣
∣
∣

ψ

U − c

∣
∣
∣
∣

2

dy = 0. (2.14)

Hence U ′′ must change sign (at least once).
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Fjørtoft’s theorem: If the flow is unstable then U ′′(U − Us) < 0 for some value of
y in (y1, y2), where ys is a point at which U ′′(ys) = 0, and Us = U(ys).

Proof: The real part of (2.13) gives

∫ y2

y1

(

|ψ′|2 + k2|ψ|2 + U ′′(U − cr)

∣
∣
∣
∣

ψ

U − c

∣
∣
∣
∣

2)

dy = 0. (2.15)

Now
∫ y2

y1
U ′′|ψ/(U − c)|2 dy = 0, so adding (cr − Us) times this gives

∫ y2

y1

(

|ψ′|2 + k2|ψ|2 + U ′′(U − Us)

∣
∣
∣
∣

ψ

U − c

∣
∣
∣
∣

2)

dy = 0 (2.16)

from which the result follows.

Examples:
(i) Here U ′′ < 0 everywhere, so the flow is necessarily stable by
Rayleigh’s theorem.
(ii) Here U ′′ = 0 at ys; but U ′′(U −Us) > 0 everywhere so the flow
is stable by Fjørtoft’s theorem.
(iii) Here U ′′ = 0 at ys, but U ′′(U −Us) 6 0 everywhere. This flow
might be unstable.

Note that both theorems give only necessary, not sufficient, conditions for instability.
U = sin y can be shown to satisfy the conditions but to be stable if y2 − y1 < π.

The Viscous Case: The Orr-Sommerfeld equation.

For a viscous fluid subject to a basic flow which is either plane Couette flow (U = y)
or plane Poiseuille flow (U = 1− y2), an analysis similar to that above leads to the Orr–
Sommerfeld equation

(U − c)(ψ′′ − k2ψ)− U ′′ψ =
1

ikRe

(
ψ′′′′ − 2k2ψ′′ + k4ψ

)
(2.17)

where Re = V L/ν is the Reynolds number. It leads to a dispersion relation of the form
F (k, c; kRe) = 0 which depends on the value of R. We are interested in the values of k
and Re for which ci > 0 giving instability. Usually we draw the neutral stability curve,
where ci = 0 in the parametric plane (k, kRe). Typically, there is a minimum value Rc of
Re above which some mode becomes unstable. The theory then predicts instability will
set in for Re > Rc.

The Orr-Sommerfeld equation can also be used to analyse the stability of boundary
layers, for example to predict the behaviour of small disturbances in the Blasius layer on
a semi-infinite flat plate. Although the flow in the boundary layer is not exactly parallel,
it can be argued that correct results will be obtained by analysing the stability of a uni-
directional flow which agrees with the U(y)-profile at some distance x along the layer. For
the Blasius boundary layer, because of its self-similar structure and a layer thickness which
increases as x1/2, the critical Reynolds number can be interpreted as a critical distance
along the plate at which instability will commence.
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Squires’ Theorem:
If a 3D-mode eikx+ilz becomes unstable at a particular value of Re, then there is an

equivalent 2D-mode which is unstable at a smaller value of Re. It therefore suffices to
consider only 2-D modes.

Proof: Consider the 3-D perturbation

u = (U(y), 0, 0) + ε(u(y), v(y), w(y)) eikx+ilz+st . (2.18)

Then the perturbed Navier-Stokes equations are

iku+ v′ + ilw = 0

(s+ ikU)u+ vU ′ = −ikp+R−1
e (u′′ − k2u− l2u)

(s+ ikU)v = −p′ +R−1
e (v′′ − k2v − l2v)

(s+ ikU)w = −ilp+R−1
e (w′′ − k2w − l2w)






(2.19)

We now define variables u and p such that

u = (ku+ lw)/k, p = kp/k where k
2

= (k2 + l2) . (2.20)

Then the first equation becomes iku + v′ = 0 while adding k times the 2nd equation to l
times the 4th we obtain

(s+ ikU)ku+ kvU ′ = −ik
2
p+R−1

e k(u′′ − k
2
u) (2.21)

or writing R = kRe/k, and s = sk/k

(s+ ikU)u+ vU ′ = −ikp+R
−1

(u′′ − k
2
u)

(s+ ikU)v = −p′ +R
−1

(v′′ − k
2
v)

iku+ v′ = 0





(2.22)

Comparing (2.22) with (2.19), we see that the 3D problem to find s in terms of k and
R is mathematically identical to the 2D problem obtained by setting l = 0 in (2.19).
Furthermore, if we write s = −ikc, then s = −ikc.

Consider first the inviscid problem, setting (Re)
−1 = 0. Then if a mode (k, l) is

unstable with growth rate <e(s), then the mode (k, 0) must also be unstable with growth
rate <e(s). But as k > k, the 2D disturbance grows faster.

If Re is finite, then the 3-D mode (k, l) may go unstable at some critical Reynolds
number Re = Rc, corresponding to R = Rc ≡ kRc/k. Then by the mathematical similarity,
the 2-D mode (k, 0) will go unstable at Re = Rc. But as Rc 6 Rc, an equivalent 2-D
mode will go unstable at a lower Reynolds number. We deduce that 2-D modes
are the first to go unstable as Re increases, and it is sufficient to consider these only.
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