
M1A1: Mechanics Motion in Accelerating or Rotating Frames

We know Newton’s laws apply only in non-accelerating (inertial) frames. What happens
if we use a set of Cartesian axes which are accelerating (but not rotating) with respect to
an inertial frame? Suppose our origin has position vector S(t) with respect to an inertial
frame. Then if a particle has position vectors R with respect to an inertial origin, and r
with respect to the accelerating origin, we have R = S+r. Now if a force F acts, Newton’s
laws require

F = mR̈ =⇒ F−mS̈ = mr̈ . (4.1)

We see therefore that we can work in the accelerating frame if we choose, provided we
include an extra ‘fictitious force,’ −mS̈, in the equation.

Now we know that rotation corresponds to motion in a circle which is associated with
an acceleration towards the centre. If we wish to work in a rotating frame we therefore
expect fictitious forces to act. This is important – we know the earth is rotating, and we
need to be able to quantify the effects of this rotation on our equations.

Consider a frame (x, y, z) which is rotating about the z-axis and compare with an
inertial frame (X, Y, Z). The two origins are the same for all time. We write x̂ and ŷ

for unit vectors in the x and y-directions, and similarly for X̂ and Ŷ. These latter two
vectors are constant, but x̂ and ŷ vary in time. For if x̂ makes an angle θ(t) with X̂, then

x̂ = cos θ X̂ + sin θ Ŷ and ŷ = cos θ Ŷ − sin θ X̂. By calculation,

d

dt
x̂ = θ̇ ŷ and

d

dt
ŷ = −θ̇ x̂ .

Consider now any time-dependent vector B = B1x̂ + B2ŷ, so that B1 and B2 are the
components measured with respect to the rotating axes. Then the true derivative of B is

dB

dt
= Ḃ1x̂ + Ḃ2ŷ +B1

dx̂

dt
+B2

dŷ

dt
= (Ḃ1x̂ + Ḃ2ŷ) + θ̇(B1ŷ −B2x̂) .

The last term we can identify as the vector product ω ∧ (B1, B2, 0), where ω = (0, 0, θ̇)
is the angular velocity vector.

Now (Ḃ1x̂+Ḃ2ŷ) is what dB/dt would be if x̂ and ŷ were stationary, that is, it is what
an observer in the rotating frame, who thinks the axes are stationary, actually measures
for dB

dt . We will use the suffix ‘rot’ amd ‘in’ to distinguish between measurements in the
rotational and inertial frames. Then we have shown that(

dB

dt

)
in

=

(
dB

dt

)
rot

+ ω ∧B . (4.2)

Suppose B is in reality a constant vector. Then in the rotating frame, it appears to
be rotating backwards with angular velocity −ω. If in (4.2) we let B = r, the position
vector of a particle, we can relate the true velocity vin and the apparent one vrot by

vin = vrot + ω ∧ r , (4.3)

as we have previously obtained.



Now we define the real and apparent accelerations

ain =

(
dvin

dt

)
in

and arot =

(
dvrot

dt

)
rot

.

and set B = vin in (4.2) to obtain

ain =

(
dvin

dt

)
rot

+ ω ∧ vin or using (4.3)

=
d

dt
(vrot + ω ∧ r)rot + ω ∧ (vrot + ω ∧ r)

= arot + ω̇ ∧ r + ω ∧ vrot + ω ∧ vrot + ω ∧ (ω ∧ r)

or ain = arot + ω̇ ∧ r + 2ω ∧ vrot + ω ∧ (ω ∧ r) (4.4a)

Since Newton’s Laws apply in an inertial frame, we know that F = main. If we choose to
work in a rotating frame we should use instead

F = m
[
a + ω̇ ∧ r + 2ω ∧ v + ω ∧ (ω ∧ r)

]
, (4.4b)

where we have now written v = vrot and a = arot.
We see that when we work in a rotating frame, we should really include three extra

terms in our equation! Fortunately, these terms are frequently small. We define the
Centrifugal force Fcen and Coriolis Force, Fcor as

Fcen = −mω ∧ (ω ∧ r) and Fcor = −2mω ∧ v . (4.5)

For measurements on the earth, the rotation rate ω ≡ |ω| = 2π/(1day) ' 7.3× 10−5 s−1.
The rate of variation of ω is tiny, so we can set ω̇ = 0 with a clear conscience. The last
term in (4.4), the centrifugal term, does have some relevance, and affects the value of g
measurably. For ω ∧ (ω ∧ r) is directed away from the axis of rotation of the earth, and
has a magnitude ω2d where d is the distance from the axis, so that d = re cosλ, where
re is the radius of the earth and λ is the latitude. Thus |ω ∧ (ω ∧ r)| ' 0.034 cosλ m/s2

which alters the value of g. At the equator g ' 9.78 while at the poles g ' 9.83. A further
adjustment in g occurs because the earth is not an exact sphere, but bulges at the equator.
We shall not calculate this effect.

The apparent value of g, which we call g′ is the resultant of the two vectors g and
ω ∧ (ω ∧ r). If we neglect terms proportional to ω4, we find

g′ ' g − rω2 cos2 λ . (4.6)

The Coriolis term 2ω ∧ v, is absolutely crucial in understanding the atmosphere and
oceans. Have you ever wondered why the wind blows along contours of constant pressure
on weather maps? As the pressure force is directed from high pressure to low pressure, one
might expect air to flow perpendicular to the pressure contours. In fact, because of the
earth’s rotation, the pressure gradient is balanced by the Coriolis force, which from (4.5)
is perpendicular to v. In the Northern hemisphere, the wind blows clockwise around high
pressure regions, and anticlockwise around pressure lows. In the Southern hemisphere,
this behaviour is reversed.


