
M1M1 January test 2007: SOLUTIONS

1. (a) Since sin−1 x is defined for |x| 6 1 we see f(x) is defined for −1 6 ex − 1 6 1 or
0 6 ex 6 2. Thus the maximal domain of f is log 2 > x > −∞. [1]

Writing

y = sin−1(ex − 1) =⇒ ex = 1 + sin y

or

x = log(1 + sin y) ≡ f−1(y) [1]

Thus if h(x) is the even part of f−1(x), then h(x) = 1
2 [f−1(x) + f−1(−x)] or

h(x) = 1
2 [log(1 + sin x) + log(1− sinx)] = 1

2 log(1− sin2 x) = log | cosx|. [1]

(b) We say f(x) is differentiable at x = a if the limit (with ε not necessarily positive)

lim
ε→0

[
f(a+ ε)− f(a)

ε

]

exists. [1]

Now if f(x) = 1/(1 + x), then

f ′(x) = lim
ε→0

1

ε

(
1

1 + x+ ε
−

1

1 + x

)

= lim
ε→0

[
1 + x− (1 + x+ ε)

ε(1 + x)(1 + x+ ε)

]

= lim
ε→0

[
−1

(1 + x)(1 + x+ ε)

]

= −
1

(1 + x)2

. [2]

(c) We have

y2 =
(4− x2)

(1− x2)
= 1 +

3

1− x2
.

As only x2 and y2 appear in the equation, we know the curve will be symmetric in both
the x-axis and y-axis. [Furthermore as (x2 − 1)(y2 − 1) = −3 is a symmetrical expression
in x2 and y2 the curve will also be symmetrical in the lines y = ±x.] Now (4−x2)/(1−x2)
is positive only for x2 > 4 or x2 < 1 and so the curve only exists in these regions. y is zero
at x = ±2 and infinite at x = ±1. As |x| → ∞ we see y2 → 1. Differentiating, we have

2yy′ =
6x

(1− x2)2
= 0 at x = 0 when y = ±2

As x increases through zero, y′ changes from + to − if y < 0, so there is a maximum at
(0, −2) and a minimum at (0, +2). Putting all this together, we get the highly symmetric
curve: (See last page [3])
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(d)(i) Substituting in x = 2 we see the expression is of the form “0/0”. So using de
l’Hôpital’s rule

lim
x→2

(
sin2 πx

x3 − 5x2 + 8x− 4

)

= lim
x→2

(
2π sinπx cosπx

3x2 − 10x+ 8

)

= lim
x→2

(
2π sinπx

3x2 − 10x+ 8

)

.

This is still of the form “0/0”, and so using de l’Hôpital once more

lim
x→2

(
2π sinπx

3x2 − 10x+ 8

)

= lim
x→2

(
2π2 cosπx

6x− 10

)

=
2π2

2
= π2 [2]

(ii) taking each part of the expression separately, we see | sin(x)/x| 6 1/x→ 0 as x→∞,
and so the first part has limit zero. Then defining

u =

(
x+ 3

x− 1

)x
=⇒ log u = x log

x+ 3

x− 1
= x log

[

1 +
4

x− 1

]

= x

[
4

x− 1
+O

(
4

x− 1

)2
]

Thus as x→∞, we see log u→ 4 and so u→ e4. The limit is thus 0+e4 = e4. [2]

(e)(i) Writing −1+i in the form reiθ, we have r2 = 2 and cos θ = −1/
√

2 and sin θ = 1/
√

2.
Thus θ = 3π/4 + 2kπ where k is any integer and so:

ez =
√

2 ei(3π/4+2kπ)

It follows that
z = 1

2 log 2 + i(3π/4 + 2kπ).

(ii) If z = x+ iy with x, y real, then the given equation is 2xy = x2 + y2 or (x− y)2 = 0.
Thus x = y = c, say. The general solution is therefore z = c(1 + i). ([3], 2 for either part
(i) or part (ii))

(f)(i) Since we know that 1/(1 +x2) is the derivative of tan−1 x, we make the substitution
u = tan−1 x, noting that when x = 1, u = π/4

I =

∫ 1

0

log(tan−1 x)

1 + x2
dx =

∫ π/4

0

log u du.

Then integrating by parts, treating log u as the product of 1 and log u, we have

I =

∫ π/4

0

log u du =
[
u log u

]π/4

0
−
∫ π/4

0

u

(
1

u

)

du = 1
4π
(
log 1

4π − 1
)
. [2]

(ii) Completing the square in the denominator and then substituting (x+ 1) = tan θ,

∫ 1

0

x+ 2

x2 + 2x+ 2
dx =

∫ 1

0

1
2 (2x+ 2) + 1

x2 + 2x+ 2
dx = 1

2

[
log(x2 + 2x+ 2)

]1

0
+

∫ 1

0

dx

(x+ 1)2 + 1

= 1
2 (log 5− log 2) +

[
θ
]tan−1 2

tan−1 1
= 1

2 log(5/2) + tan−1 2− 1
4π.

[2]
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2. If y = sinh−1 x so x = sinh y and dx/dy = cosh y =
√

1 + x2. Therefore

dy

dx
=

1
√

1 + x2
=⇒

d2y

dx2
=

(−1/2)(2x)

(1 + x2)3/2
= −

x

1 + x2

dy

dx
[5]

Regrouping,
(1 + x2)y′′ + xy′ = 0

Differentiating n times using Leibniz’s formula,

(1 + x2)y(n+2) + n(2x)y(n+1) +
n(n− 1)

2
(2)y(n) + xy(n+1) + ny(n) = 0

Evaluating this equation at x = 0, we have

y(n+2)(0) + (n(n− 1) + n)y(n)(0) = 0 =⇒ y(n+2)(0) + n2y(n)(0) = 0 [7]

as required. Now y(0) = 0 and from the above formula y′(0) = 1. It follows that all even
derivatives are zero and y(2k+1)(0) = −(2k− 1)2y(2k−1)(0). So using the Maclaurin series,

sinh−1(x) =
∞∑

k=0

(−1)k
(1)2(3)2(5)2 . . . (2k − 1)2

2k + 1!
x2k+1 = x−

x3

6
+

9x5

5!
+ . . . [4]

Using the ratio test, the series converges if

1 > lim
k→∞

∣
∣
∣
∣
y(2k+1)(0)x2k+1/(2k + 1)!

y(2k−1)(0)x2k−1/(2k − 1)!

∣
∣
∣
∣ = lim

k→∞

∣
∣
∣
∣
−(2k − 1)2x2

(2k + 1)(2k)

∣
∣
∣
∣ = x2

Therefore the series has radius of convergence 1. [4]

3. As the ODE is linear, we use the integrating factor

I = exp

[∫
4 sinx dx

5 + 4 cosx

]

= exp[− log(5 + 4 cos x)] = (5 + 4 cos x)−1 [5]

Multiplying the ODE by I, we obtain

d

dx

(
y

5 + 4 cosx

)

=
3

2

∫
dx

5 + 4 cosx
[3]

Now using the substitution t = tan 1
2x, we have cosx = (1 − t2)/(1 + t2) and dx/dt =

2/(1 + t2) so
∫

dx

5 + 4 cosx
=

∫
2dt

5(1 + t2) + 4(1− t2)
=

∫
2dt

9 + t2
=

2

3
tan−1(t/3) + c, [7]

where c is an arbitrary constant. Therefore integrating the ODE, we have

y

5 + 4 cosx
= tan−1[ 1

3 tan(x/2)] + c =⇒ y = (5 + 4 cos x)
(
tan−1[ 1

3 tan(x/2)] + c
)

[2]

If y(0) = 0, then 0 = 9(0+c) or c = 0, giving the required solution. [3]
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