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(b) So

v
dv

dx
= v +

1

x
v2 =⇒ v = 0 or

dv

dx
= 1 +

1

x
v.

So either v = 0 everywhere, or v satisfies a linear equation.
The integrating factor is exp(−

∫
x−1dx) = x−1. Thus

d

dx

( v
x

)
=

1

x

Integrating,
v = x log x+ cx (or v ≡ 0) [3](+[1])

(c) If v = 1 when x = 1 we can’t have the v ≡ 0 solution and must have c = 1. So

dx

dt
= x(log x+ 1) =⇒ t =

∫
dx

x(log x+ 1)

Substituting u = log x (or spotting that this is a logarithmic derivative) we find

t = log(log x+ 1) + d = log(log x+ 1)

imposing x = 0 at t = 0. Thus, as required,

x = exp(et − 1) ≡ f(t). [3]

(d) As t takes all values, et takes all positive values. Thus x takes all values with x > e−1

The inverse function is t = log(1+log x) = f−1(x). This is defined provided both logs have
positive arguments, which requires log x > −1 or x > e−1. [2]

(e) The curve x = f(t) has stationary points where f ′(t) = 0, and inflection points where
f ′′(t) = 0. Now f ′(t) = et exp(et − 1). This is never zero as real exponentials never are.
Similarly f ′′(t) = (et+e2t) exp(et−1) > 0 always. The curve has no stationary points or in-
flection points. [2]

(f) We know x(0) = 1, x′(0) = 1 and from the original equation x′′(0) = x′(0) +
[x′(0)]2/x(0) = 2 So the Maclaurin series is

x(t) = 1 + t+ 1
2 (2)t2 +O(t3) = 1 + t+ t2 +O(t3). [2]

(g) As t→ 0, we know x→ 1. Thus (or by other methods)

lim
t→0

[
log f(t)

(f(t)− 1)2/3

]

= lim
x→1

[
log x

(x− 1)2/3

]

= lim
x→1

[
(x− 1) +O((x− 1)2)

(x− 1)2/3

]

= 0. [2]
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(h) When t = 2i, we have x = exp(e2i − 1). Now

exp(e2i − 1) = exp((cos 2− 1 + i sin 2)) = exp(cos 2− 1)(cos(sin 2) + i sin(sin 2))

So the real part is
<e(x) = e(cos 2−1)(cos(sin 2)). [3]

Total : [20]

2. (a) The Mean Value Theorem states that if f(x) is continuous in an interval [a, b]
and differentiable in (a, b) then there exists a ξ in a < ξ < b such that

f(b)− f(a)

b− a
= f ′(ξ). [2]

So if f(a) = 0 = g(a) then f(x) = (x−a)f ′(ξ) and g(x) = (x−a)g′(η) for some ξ and η
with a < ξ < x and a < η < x. (Note ξ and η are different, in general.) [2]

Now as x→ a it is clear that ξ → a and also η → a. Thus

lim
x→a

[
f(x)

g(x)

]

= lim
x→a

[
f ′(ξ)

g′(η)

]

=
f ′(a)

g′(a)
, [2]

since the derivatives are continuous and the denominator non-zero.

(b)(i) Both numerator and denominator are zero. Assuming both limits exist,

lim
x→1/2

[
log(sinπx)

(2x− 1)2

]

= lim
x→1/2

[
π cosπx/ sin(πx)

4(2x− 1)

]

= 1
4π lim

x→1/2

[
cosπx

2x− 1

]

. [3]

Once more this is of form “0/0”. Using de l’Hôpital’s rule again, assuming the limits exist

lim
x→1/2

[
cosπx

2x− 1

]

= lim
x→1/2

[
−π sinπx

2

]

= − 1
2π. [2]

Since this latter limit exists, so does the intermediate one, and hence so does the original
limit. We deduce

lim
x→1/2

[
log(sinπx)

(2x− 1)2

]

= −
π2

8
. [2]

(ii) Once more f(0) = 0 = g(0). Now g′(x) = sinx and f ′(x) = 3x2 sin(1/x)− x cos(1/x).
So f ′(0) = 0 = g′(0). However

lim
x→0

[
f ′(x)

g′(x)

]

= lim
x→0

[

3x sin

(
1

x

)

− cos

(
1

x

)] [ x

sinx

]

and this does not tend to a limit, because of the cos(1/x) term. We cannot use de l’Hôpital’s
rule here. [4]
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However, going back to the original limit, since | sin(1/x)| 6 1, it is clear that f(x) =
O(x3) as x→ 0. As g(x) = 1− cos(x) = 1

2x
2 +O(x4), it follows that

lim
x→0

[
f(x)

g(x)

]

= 0. [3]

Total : [20]

3.(a) If f(x) = log(x+ a), then f ′(x) = (x+ a)−1, f ′′(x) = −(x+ a)−2 and

f (n)(x) =
(−1)n+1(n− 1)!

(x+ a)n
for n > 1. [2]

Thus

f(x) =
∞∑

n=0

f (n)(0)xn

n!
= f(0) +

∞∑

n=1

(−1)n+1

n

(x
a

)n
= log a+

∞∑

n=1

(−1)n+1

n

(x
a

)n
. [2]

The Radius of Convergence follows from the ratio test: we need
∣
∣
∣
x

a

∣
∣
∣ lim
n→∞

[
(n+ 1)

n

]

< 1 =⇒ |x| < a,

so radius of convergence is a. [2]
(b) If the series holds when a = i, then

log(x+ i) = log i−
∞∑

n=1

(ix)n

n
.

Now log(reiθ) = log r + iθ(+2kπi). So log i = 1
2πi. Writing x + i = r(cos θ + i sin θ) we

have x = r cos θ and 1 = r sin θ so that r =
√

1 + x2 and sin θ = 1/r (with cos θ > 0).
Taking the imaginary part we have

θ + 2kπ = 1
2π −

[
x− 1

3x
3 + 1

5x
5 + . . .

]
= 1

2π +
∞∑

m=1

(−1)mx2m−1

2m− 1
.

As we want 0 < θ < 1
2π, choose k = 0. Combining things, we have

sin−1

(
1

√
1 + x2

)

= 1
2π − x+ 1

3x
3 − 1

5x
5 + . . . [8]

(c) We know that d
du

(sin−1 u) = (1− u2)−1/2. So

g′(x) =
1

(1− (1/(1 + x2))1/2

(−1/2)2x

(1 + x2)3/2
=

−x
(x2)1/2(1 + x2)

= −
1

1 + x2
[4]

assuming x > 0. Now

−
1

1 + x2
= −1 + x2 − x4 + . . . =

d

dx

[
1
2π − x+ 1

3x
3 − 1

5x
5 + . . .

]
[2]

Total : [20]
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