
M1M1 Handout: Ordinary Differential Equations, or ODEs

An ODE is an equation relating an unknown function, say y(x), and at least one of its
derivatives (y′(x), y′′(x). . . ) The order of the ODE is the number of the highest derivative
to occur in the equation. x is usually called the independent variable, y the dependent
variable.

A collection of all possible solutions to an ODE is called its general solution. The
general solution of an nth order ODE has n arbitrary constants in it, one for each integration
which occurs during the solution. To determine the solution uniquely n extra pieces of
information are required, so that for a first order equation we may need the value of y at
one specific point.

We regard an ODE as ‘solved’ if the derivatives can somehow be removed leaving
an equation relating x and y alone, possibly involving integrals of known functions. We
shall not worry about whether the integrals involved can be evaluated in terms of simple
functions.

Linear ODEs

We say an ODE is linear if y and its derivatives appear as a linear combination, with
coefficients which may depend on x. Thus the most general nth order ODE can be written

an(x)y(n) + an−1(x)y(n−1) + . . .+ a1(x)y′ + a0(x)y = f(x) (1)

for known functions a0, a1, . . . an and f . If f ≡ 0, we say the equation is homogeneous,
whereas if f 6= 0 we say it is inhomogeneous. If n > 1, this equation cannot be solved
in general, but we can say a lot about the structure of the solution.

Suppose we can find n linearly independent solutions of (1) when f ≡ 0, which we
write as y = φi(x) for known functions φ1, φ2. . . for i = 1 . . . n. Suppose further that we
can find one particular solution of the full equation (1), which we write as y = P (x). Then
the general solution of (1) can be written as

y = A1φ1(x) +A2φ2(x) + . . . Anφn(x) + P (x), (2)

where A1, A2. . . are arbitrary constants. In this expression P is often called the Particular
Integral (or P.I.), and the rest of the solution is called the Complementary Function
(or C.F.). We shall not discuss Particular Integrals in this course – see M1M2 for further
details. [Note: In the language of M1GLA, The Complementary Function is a Vector
Space with basis {φ1, φ2, . . . φn}.]

Linear ODEs with Constant Coefficients

In general, the functions φi are not easy to find. However, if the functions ai are all
constants, then there is a simple method of finding them.

A little thought indicates that if y = epx, where p is a constant, then y(n) = pny. It
follows that y = epx is a solution of (1) with f = 0 provided[

anp
n + an−1p

n−1 + . . .+ a1p+ a0
]
epx = 0. (3)
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This holds if p is one of the n roots of the polynomial in square brackets. In general, there
are n roots of this polynomial, and we have our n linearly independent solutions φn. The
polynomial is known as the auxiliary equation.

Example: let y′′ + y′ − 2y = 0. Try y = exp(λx). We obtain the auxiliary equation
λ2 + λ− 2 = 0, which has roots λ = 1, and λ = −2. The general solution is then

y = Aex +Be−2x.

Complex Roots:

The algebra goes through if the auxiliary equation has complex roots, which indicate
trigonometric functions. For example, with y = exp(rx).

y′′ + y = 0 =⇒ r2 + 1 = 0 =⇒ r = ±i.

Thus
y = Aeix +Be−ix = C cosx+D sinx,

where C and D are arbitrary, related to the arbitrary A and B by C = A + B and
D = i(A − B). If instead, the two roots are fully complex, say, a ± ib, then the solution
would be exp(ax)(C cos bx+D sin bx).

Repeated Roots:

If the auxiliary equation has a repeated root, λ0 say, then two of the φi would be the same.
In this case, a simple practical rule is to try multiplying the repeated exponential by x.
Question 2 on Problem Sheet 9 justifies this rule. Thus for example, the third order ODE

y′′′ + 3y′′ + 3y′ + y = 0 has the auxiliary equation (p+ 1)3 = 0

which has a triple root. Its general solution is

y = Ae−x +Bxe−x + Cx2e−x = e−x(A+Bx+ Cx2),

as can be verified by substitution.

Once the General Solution has been obtained, a particular solution which satisfies
extra conditions may be sought. For example, suppose

y′′ + 4y′ + 13y = 0 with y(0) = 3, y′(0) = 0.

The General Solution is y = e−2x(A cos 3x+B sin 3x). Imposing the boundary condition
(or initital condition) y(0) = 3 gives 3 = A. Differentiating, we have

y′ = e−2x [−2A cos 3x− 2B sin 3x− 3A sin 3x+ 3B cos 3x] =⇒ y′(0) = −2A+ 3B.

Imposing the second boundary condition, we have 0 = −2(3) + 3B or B = 2. So the
solution is

y = e−2x [3 cos 3x+ 2 sin 3x] .
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First Order ODEs

We now turn our attention to 1st order ODEs, i.e. equations relating y, x and y′.
These can often be solved exactly. There are several easily recognisable types of 1st order
ODEs which can be solved systematically. We examine these in turn.

(A) Separable equations:

An equation which can be written in the form

dy

dx
= f(x)g(y) is called separable. (4)

It is easily solved by writing the x and y parts on opposite sides of the equation and
integrating, ∫

f(x)dx =

∫
dy

dx

dx

g(y)
=

∫
dy

g(y)
. (5)

(B) Linear First Order ODEs:

An equation is called linear if it can be written in the form

dy

dx
+ p(x)y = q(x). (6)

Such equations can always be solved by multiplying them by a suitable integrating fac-
tor, I(x), so that

Iy′ + pIy = qI. We try to choose I(x) so that the LHS is (Iy)′. (7)

Expanding (Iy)′, we see that this requires

I ′y = pIy =⇒ 1

I

dI

dx
= p(x). (8)

which is a separable equation for the function I(x). Integrating, we have∫
dI

I
=

∫
p(x) dx =⇒ I(x) = exp

[∫
p(x) dx

]
. (9)

Having found I(x), the equation (8) takes the form

d

dx
(I(x)y) = q(x)I(x) =⇒ y =

1

I(x)

∫
qI dx+ c. (10)

As ever, it is more important to remember the idea behind the method, than the formula
itself. The most common error when finding integrating factors is to forget to divide
through by a function multiplying y′. Note that the integrating factor may be multiplied
by an arbitrary constant, which derives from the integration in (9).
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(C) Dimensionally Homogeneous First Order ODEs:

It is very unfortunate that standard ODE terminology uses the word “Homogeneous”
to mean two different things. The first meaning (see equation (1)) is the more general
one. Any problem for which the zero function is a permissible solution can be called
homogeneous. We shall distinguish the two cases by calling this case dimensionally
homogeneous.

An equation of the form for some function f

dy

dx
= f(y/x) is called dimensionally homogeneous. (11)

If you imagine x and y have physical dimensions, say length, this means that every term
in the equation has the same physical dimension. Equations of this type can always be
solved by the substitution

y(x) = xv(x) =⇒ y′ = xv′ + v. (12)

Equation (11) then takes the separable form

x
dv

dx
+ v = f(v) =⇒

∫
dv

f(v)− v
=

∫
dx

x
. (13)

Having integrated to find v, the general solution for y follows.

(D) Substitutions: Various tricks

Sometimes equations can be transformed into recognisable forms by a suitable substitution.
There are no rules here – use your imagination and judgement. Here are a few examples:

y
dy

dx
+ xy2 = x2 Try v = y2 (14)

dy

dx
= a(x)y + b(x)y2 Try v = y−1 (15)

dy

dx
=

1

x+ ey
Try solving for x as a function of y (16)

These last three examples can be transformed to linear equations in the new variables.

dy

dx
=
x+ 2y + 3

3x+ y + 4
Try X = x+ a, Y = y + b to get a homogeneous equation in Y (X)

(17)
A trick worth noting is that d2y/dx2 can be written as p dp/dy where p = dy/dx. So for
example, if x is some function of dy/dx, the solution can be found parametrically in terms
of p:

x = f(p) =⇒ 1 = f ′(p)
dp

dx
= f ′(p)p

dp

dy
=⇒ y =

∫
f ′(p)p dp. (18)
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