M1M1 Progress Test 2: November 16th 2007. Write your name clearly on your answer book. No calculators, books or lecture notes. 50 minutes. Attempt all four questions.

1. The (continuous) function f(x) is defined for all x by

$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
 for $x \neq 0$, and $f(0) = 0$

(a) Using any method, find f'(x), for $x \neq 0$.

(b) For x = 0, show from first principles that the derivative f'(0) exists and evaluate it.

(c) Combining (a) and (b), what do you deduce about the derivative f'(x)?

2. Using Leibniz' rule, evaluate the n'th derivative

$$\left(\frac{d^n}{dx^n}\right)[x^2e^x].$$

Hence find the Maclaurin series for the function $x^2 e^x$. Compare your answer with one obtained directly from the series for exp(x).

3. The function g(x) is such that g(0) = 0 and has the derivative

$$g'(x) = \frac{1}{5 + \sin x}.$$

Use the Mean Value Theorem to find numbers α and β such that

$$\alpha < g(\frac{1}{2}\pi) < \beta.$$

4. Determine, by any method, the value of the limit

$$\lim_{t \to \infty} \left[\frac{\log(1+t)}{t} + \frac{t^2 + 7t + 12}{t^3 + 4t^2 - 1} + (\tanh t) \tan^{-1}(2t) + t \sin\left(\frac{2}{t}\right) \right].$$