
M1M1 Handout 1: Properties of the Trigonometric Power Series
This sheet can be found on http://www.ma.ic.ac.uk/∼ajm8/M1M1

Proof that cosx has a zero in the interval (1.4, 1.6).

Let us denote by coz x and zinx the functions defined by the infinite power series.
We aim to show that these are in fact the trigonometric functions cos x and sinx. On this
sheet and on Problem sheet 2 Q1, we prove various properties about coz x.

Firstly, we rearrange the power series for coz x in the two equivalent forms:

cozx =

[

1−
x2

2

]

+
x4

4!

(

1−
x2

(5)(6)

)

+
x8

8!

(

1−
x2

(9)(10)

)

+ . . . (1)

and alternatively

cozx =
1

4!

[
24− 12x2 + x4

]
−
x6

6!

(

1−
x2

(7)(8)

)

−
x10

10!

(

1−
x2

(11)(12)

)

+ . . . (2)

Now from equation (1), we can see that coz x > 0, if

0 < x <
√
2 ' 1.414,

since then all the bracketed terms are positive.

Now consider equation (2). The first term is a quadratic in x2, and we can show that
24− 12x2 + x4 < 0 provided

6 +
√
12 > x2 > (6−

√
12).

We note that (6 −
√
12)1/2 ' 1.592. Furthermore, all the remaining terms are negative

provided x2 < 56. This is certainly true if x2 < 6 +
√
12. Thus we know cozx < 0 in the

above range.

So cozx changes sign somewhere between x = 1.414 and x = 1.592. Since coz x is a
continuous function, we conclude there must be a value τ for which coz τ = 0.

Of course we ‘know’ that τ = 1
2π ' 1.57. We will in fact define π as equal to 2τ ,

where τ is the first positive zero of coz x.

Exercise: Use the power series for zin to prove that zin x > 0 for 0 < x <
√
6.

Deduce that sin τ > 0.

You may need this last result in question 1 on problem sheet 2, where you will prove
that coz (x + τ) = −zinx, and that coz is a 4τ -periodic function. You will also need the
formula for coz (x+ y) which we prove next.

[Note: We are assuming that the infinite series converge which we haven’t yet shown.
We shall also assume overleaf that we can rearrange all the terms in the product of two
infinite series, which you will prove next term.]
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Proof of the formula for cos(x+ y)

We begin by arguing that a double sum over all positive integers m and n is equivalent to
summing over all possible totals p ≡ m + n and over each value of n less than this total,
i.e.

∞∑

m=0

∞∑

n=0

[. . .] =
∞∑

p=0

p∑

n=0

[. . .].

Now from the series definition of the coz function, (being careful to use different dummy
summation variables, m and n)

cozx coz y =

[
∞∑

n=0

(−1)n x2n

(2n)!

][
∞∑

m=0

(−1)m y2m

(2m)!

]

=
∞∑

m=0

∞∑

n=0

[
(−1)n+m x2n y2m

(2n)!(2m)!

]

=
∞∑

p=0

p∑

n=0

(−1)p x2n y2p−2n

(2n)!(2p− 2n)!

=
∞∑

p=0

(−1)p

(2p)!

p∑

n=0

(
2p
2n

)

x2ny2p−2n

(3)

using the double sum relabelling above, writing p = (m + n) and using the definition of
the binomial coefficient. Similarly,

−zinx zin y =
∞∑

m=0

∞∑

n=0

+
(−1)m+n+1x2n+1y2m+1

(2n+ 1)!(2m+ 1)!

=
∞∑

p=1

(−1)p

(2p)!

p∑

n=0

(
2p
2n+ 1

)

x2n+1y2p−(2n+1)
(4)

where this time we have written p = (m + n + 1). Note that m, n and p are dummy
variables we sum over and they hold no significance outside the equation they appear in.
The RHSs of equations (3) and (4) are very similar – the first involves all the even

integers up to 2p while the second all odd integers. Adding them together, we have

cozx coz y − zinx zin y =
∞∑

p=0

(−1)p

(2p)!

2p∑

k=0

(
2p
k

)

xky2p−k

=

∞∑

p=0

(−1)p

(2p)!
(x+ y)2p by the binomial theorem

= coz (x+ y)

by the definition of coz . We have proved that

For the functions coz and zin defined by infinite series, then for all x and y
coz (x+ y) = cozx coz y − zinx zin y.
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