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Given an interval [a, b] we define a partition to be a set of n points x1, x2 . . . xn such that

a ≡ x0 < x1 < x2 < x3 < . . . < xn < xn+1 ≡ b.

For a given partition, we choose points on each subinterval, ξ0, ξ1 . . . ξn such that for all i,
xi < ξi < xi+1. Then for each function f(x), we define the Riemann sum

Sn = (x1 − x0)f(ξ0) + (x2 − x1)f(ξ1) + . . .+ (xn+1 − xn)f(ξn).

Pictorially, we are forming n+1 rectangles whose sum resembles the area under the curve
y = f(x).
We now let n→∞, in such a manner that (xi+1 − xi)→ 0, for all i. If the sequence

Sn tends to a limit, and if this limit does not depend on the particular partitions nor the
values of ξi we choose, then we write this as

lim
n→∞

Sn =

∫ b

a

f(x) dx

and the result is called the integral or definite integral of f(x) between x = a and x = b.
A function f(x) for which this limit exists is called integrable, or ‘Riemann integrable.’
It can be shown that all continuous functions are integrable. The function f(x) is called
the integrand.

It is important to grasp that an integral is a generalisation of a sum, and behaves
similarly. Various properties follow from the definition. For example, if f(x) is integrable
and bounded by m 6 f(x) 6 M , then

m(b− a) 6
∫ b

a

f(x) dx 6 M(b− a).

Supposem andM are the minimum and maximum values attained by a continuous function
f(x) over the interval [a, b]. Then (b − a)f(x) attains every value between (b − a)m and
(b−a)M somewhere in [a, b], in particular, the value equal to the above integral. Therefore
there is a value ξ, in a < ξ < b such that

∫ b

a

f(x) dx = (b− a)f(ξ) [The mean value theorem for integrals.]

It also follows from the definition that
∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx.

If we define the integral from b to a in an identical manner we can see that

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx
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If we fix the lower limit a, then an integrable function f(x) defines another function

F (b) =

∫ b

a

f(x) dx or F (x) =

∫ x

a

f(t) dt.

Note that we do not use the same variable name for the limit (x) and the dummy integration
variable, t, when there is any risk of confusion. It follows that for any c and d,

∫ d

c

f(t) dt =

∫ d

a

f(t) dt−
∫ c

a

f(t) dt = F (d)− F (c).

Consider now ∫ x+h

x

f(t) dt = F (x+ h)− F (x).

By the Mean Value Theorem for Integrals (see above),

F (x+ h)− F (x) = (x+ h− x)f(ξ), for some ξ in x < ξ < x+ h.

Thus

lim
h→0

[
F (x+ h)− F (x)

h

]

= lim
h→0
f(ξ).

But ξ is sandwiched between x and x + h, and so as h → 0, necessarily ξ → x. Thus the
limit on the RHS exists and equals f(x), as f is continuous. Hence the limit of the LHS
exists. By definition, this means that the function F (x) is differentiable, and its derivative
is f(x). We have shown that

d

dx

∫ x

a

f(t) dt = f(x) [The Fundamental Theorem of Calculus.]

Suppose now that G(x) is another function such that dG/dx = f(x), that is G(x) is an
antiderivative of f . Then

0 = f(x)− f(x) =
dG

dx
−
dF

dx
=
d

dx
(G− F ) =⇒ G− F = A for some constant A.

Thus ∫ b

a

f(x) dx = F (b)− F (a) = F (b) +A− (F (a) +A) = G(b)−G(a).

So if f(x) is a continuous function, we can evaluate its integral by taking the difference
of any anti-derivative at the end-points. We write the anti-derivative as an indefinite
integral

G(x) =

∫ x
f(t) dt or G(x) =

∫
f(x) dx.
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