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1. The function f(x) is defined for all real x by

f(x) =

{
e−1/x for x 6= 0
0 for x = 0.

(a) Consider lim
x→0
f(x). Is f(x) continuous?

(b) Write down the Taylor series for f(x) about the point x = 1 in terms of f and its

derivatives, including the general term.

(c) Show that x2f ′(x) = f(x) and deduce that if f (n) denotes the n’th derivative of f ,

f (n+1)(1) + (2n− 1)f (n)(1) + n(n− 1)f (n−1)(1) = 0. (∗)

(d) Assuming that for some real number L

lim
n→∞

[
f (n+1)(1)

nf (n)(1)

]

= L,

deduce from equation (∗) the value of L.

(e) What is the radius of convergence of the series in part (b)?

Now define g(t) = f(t2), for all values of t.

(f) Assuming that g(n)(t) is continuous, and that lim
y→∞
yαe−y = 0 for every real constant α,

determine g(n)(0).

(g) Discuss carefully whether or not the Maclaurin series for g(t) converges to the

function g(t).

(h) Does the integral ∫ ∞

0

g(log x) dx exist?
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2. The complex variable ζ = ξ + iη is related to the complex variable z = x+ iy by

ζ =
ez − i
ez + i

.

(a) Find |ζ|2 as a function of x and y and deduce that |ζ| < 1 if 0 < y < π.
What happens to the strip in the z-plane π < y < 2π?

(b) Illustrate in a diagram in the ζ-plane the curves corresponding to the lines y = 0, y = 1
2
π

and y = π, indicating the direction corresponding to increasing x.

(c) Find z as a function of ζ. What values of x and y correspond to the point ζ = (1+2i)/5?

3. Find y(x), implicitly or explicitly, satisfying the following ODEs and boundary conditions:

(a)

cos x
dy

dx
+ y sin x = 1, y(1

4
π) = 0.

(b)

y2 = x2
(
dy

dx
+ 2

)

, y(1) = 1
2
.

(c)

y
d2y

dx2
+ 2

(
dy

dx

)2
= 2
dy

dx
, y(0) = 1, y′(0) = 2,

by considering (yny′)′ or otherwise.

4. (a) Find the limit

lim
x→2
(3− x)cosec(x−2).

(b) Simplify the expression

(a− b)
n−1∑

k=0

an−k−1bk,

where n is an integer.

Hence find the derivative of x1/n from first principles.

(c) Write the real function f(x) = log[sin(x + π/4)] as the sum of an even function g(x)

and an odd function h(x).

Find the domain of x such that −π < x < π for which all three of f , g and h are
defined.

Sketch the graphs of f , g and h for −1
4
π < x < 1

4
π on the same diagram.
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