M1M1 Handout 2: Limits, Infinite Sequences and Series

This sheet has a brief summary of some important properties. More details next term.

(1) An **infinite sequence** is an ordered list of numbers or **terms**, which we write as $\{u_n\}$ for n = 0, 1, 2... The numbers u_n may be complex or real.

(2) The sequence $\{u_n\}$ has a **limit** U, if, for all n sufficiently large, $|u_n - U|$ is arbitrarily small. In that case we say the sequence **converges**, and write

$$u_n \to U$$
 as $n \to \infty$, or $\lim_{n \to \infty} u_n = U$.

If the sequence does not tend to a limit, we say it **diverges**. For example, if $u_n = 1/n$, then $u_n \to 0$ as $n \to \infty$. The sequence $\{r^n\}$, where r is given, has the limit

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } |r| < 1\\ \infty & \text{if } |r| > 1 \end{cases}$$

[Note: " ∞ " is not really a limit – it's one way a sequence can diverge. We may use the shorthand "= ∞ " to mean "is arbitrarily large in modulus," but it's sloppy notation.] If |r| = 1, the sequence does not converge unless r = 1, when it has the limit 1.

(3) Let f(x) be a function of a real variable x. If for every sequence $\{x_n\} \to a$ as $n \to \infty$, the sequence $f(x_n) \to L$, then we say the limit of f(x) as $x \to a$ exists, and $\lim_{x \to a} f(x) = L$. If **in addition** f(a) = L, we say f(x) is **continuous** at a.

(4) Limits behave well under addition and multiplication, so that if $a_n \to A$, and $b_n \to B$, then $(a_n + b_n) \to (A + B)$ and $(a_n b_n) \to AB$. Also, if $b_n = f(a_n)$, where the function f is continuous at A, then B = f(A).

(5) Polynomials in n are dominated as $n \to \infty$ by their largest power of n. Thus

$$\lim_{n \to \infty} \left(\frac{n^p + a_1 n^{p-1} + \ldots + a_p}{n^q + b_1 n^{q-1} + \ldots + b_q} \right) = \begin{cases} 0 & \text{if } p < q \\ 1 & \text{if } p = q \\ \infty & \text{if } p > q \end{cases}$$

Exponentials dominate polynomials. For example, $\lim_{n \to \infty} n^{100} (1.01)^{-n} = 0.$

(6) Any finite number of terms cannot determine whether a sequence converges.

(7) An **infinite series** is the sum of all the terms in an infinite sequence. We interpret this infinite sum by defining a sequence of "partial sums," $s_n = \sum_{r=0}^n u_r$. If the sequence $\{s_n\} \to S$ (finite) as $n \to \infty$, we say that the infinite series converges to S, and write

$$\sum_{n=0}^{\infty} u_n = S$$

Otherwise, we say that the series is **divergent**. The study of infinite series is a difficult topic, full of traps, especially when the terms may be either positive or negative.

(8) For a series $\sum_{n=0}^{\infty} u_n$ to converge, it is **necessary** that $\lim_{n \to \infty} u_n = 0$, i.e. the terms must tend to zero as $n \to \infty$. Note this condition is **not sufficient** to show convergence.

(9) Absolute convergence: We say that the series $\sum_{n=0}^{\infty} u_n$ is absolutely convergent if $\sum_{n=0}^{\infty} |u_n|$ is convergent. If a series is absolutely convergent then it is also convergent, and it is legitimate to reorder terms and perform other "sensible" operations on it.

(10) The comparison test. Suppose that a_n and b_n are real and a_n ≥ b_n ≥ 0. Then
(i) if ∑_{n=0}[∞] a_n is convergent then ∑_{n=0}[∞] b_n also converges.
(ii) if ∑_{n=0}[∞] b_n is divergent, then so is ∑_{n=0}[∞] a_n.

(11) The **geometric series** $\sum_{n=0}^{\infty} r^n$ converges if and only if |r| < 1. If r = 1 it increases without limit, while if r = -1 it oscillates between 0 and 1.

(12) The **harmonic series** $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. More generally, the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$, where s is real, converges iff s > 1. The behaviour of this series when s is complex is related to the most famous unsolved problem in mathematics, the **Riemann hypothesis**.

(13) The ratio test. Essentially using the comparison test with a geometric series we can show that if

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = l , \quad \text{then the series} \quad \sum_{n=0}^{\infty} a_n \begin{cases} \text{converges if } l < 1 \\ \text{diverges if } l > 1 \\ \text{uncertain if } l = 1 \end{cases}$$

This test is very useful, but sometimes the ratio does not tend to a limit.

(14) **Power series**: If $\{a_n\}$ is a given sequence, we can define a function f(x)

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, provided the series converges.

We use the ratio test, defining $u_n = a_n x^n$, to infer that if

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R} \qquad \text{then} \quad \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = \frac{|x|}{R}$$

so that the series converges if |x| < R, diverges if |x| > R, and may do either if |x| = R. This critical value of |x| is called the **Radius of Convergence** of the **power series**. R exists even if the ratio test fails. Sensible manipulation of the series is valid for |x| < R.

(15) If |x| < R, we can differentiate the power series for f(x) term by term m times, and then evaluate at x = 0 to find $f^{(m)}(0) = a_m m!$. This leads to the **Maclaurin series**:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

(16) A change of variable leads to the **Taylor series** for f(x+h):

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + \dots \frac{f^{(n)}(x)}{n!}h^n + O(h^{n+1}) .$$

This series is very useful when seeking approximations when h is small.