Progress test week 4, Question 2:

Write down the power series for $\sin x$ and $(1+x)^{-1/2}$ giving terms up to and including x^3 . Hence express as a power series in x the function

$$\frac{1}{\sqrt{1+\sin x}}$$

including all terms up to and including x^3 .

Make an intelligent guess as to for which values of x the infinite series converges.

Solution:

$$\sin x = x - \frac{1}{6}x^3 + \dots$$
 [1]

$$(1+x)^{-1/2} \simeq 1 - \frac{1}{2}x + (-\frac{1}{2})(-\frac{3}{2})(\frac{1}{2})x^2 + (-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})(\frac{1}{6})x^3 = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3$$
[2] provided $|x| < 1$.

$$(1+\sin x)^{-1/2} = 1 - \frac{1}{2}\sin x + \frac{3}{8}\sin^2 x - \frac{5}{16}\sin^3 x + \dots$$

= $1 - \frac{1}{2}(x - \frac{1}{6}x^3 + \dots) + \frac{3}{8}(x - \frac{1}{6}x^3 + \dots)^2 - \frac{5}{16}(x + \dots)^3 + \dots$
= $1 - \frac{1}{2}x + \frac{1}{12}x^3 + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots$
= $1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{11}{48}x^3 + O(x^4).$ [5]

We need $|\sin x| < 1$ so $|x| < \frac{1}{2}\pi$ should be ok. When $x = -\frac{1}{2}\pi$ we know the function is infinite, so we might guess that $|x| < \frac{1}{2}\pi$ is necessary and sufficient for convergence. [2] The guess $x = \frac{3}{2}\pi$ is also intelligent and should be allowed – other guesses at the

marker's discretion. Note that the above is some way from being truly rigorous.

Total : [10]

[Note to marker: Some may use a Maclaurin or Taylor series. If they get it right, nevertheless deduct one mark for not obeying the 'Hence' instruction in the question.]