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Question 3.

(a) Express in both standard and polar form the complex number
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(b) Assuming that the formula for sin(A+B) holds even when A and B are complex,
show that the only complex numbers z = x + iy such that sin(x + iy) = 0 are real.

[You may also assume cosh[t] = cos[it], i sinh[t] = sin[it] and standard properties of
these functions.]
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Taking the real part, we have
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(b) We have

sin(x + iy) = sin x cos(iy) + cos x sin(iy) = sin x cosh y + i cos x sinh y

If sin z = 0, both the real and imaginary parts must be zero, so that sin x cosh y =
0 = cos x sinh y. But cosh y > 1, so we must have sin x = 0. This means cos x 6= 0,
and so we must also have sinh y = 0. But this only happens when y = 0, so that z
must be real. [5]


